These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 31397157)

  • 21. Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks.
    Liu J; Lan J; He X
    J Phys Chem A; 2022 Jun; 126(24):3926-3936. PubMed ID: 35679610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analytical Model of Electron Density and Its Machine Learning Inference.
    Cuevas-Zuviría B; Pacios LF
    J Chem Inf Model; 2020 Aug; 60(8):3831-3842. PubMed ID: 32786704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning prediction of empirical polarity using SMILES encoding of organic solvents.
    Saini V
    Mol Divers; 2023 Oct; 27(5):2331-2343. PubMed ID: 36334165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
    Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B
    Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Scalable Graph Neural Network Method for Developing an Accurate Force Field of Large Flexible Organic Molecules.
    Wang X; Xu Y; Zheng H; Yu K
    J Phys Chem Lett; 2021 Aug; 12(33):7982-7987. PubMed ID: 34433274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Locally connected spiking neural networks for unsupervised feature learning.
    Saunders DJ; Patel D; Hazan H; Siegelmann HT; Kozma R
    Neural Netw; 2019 Nov; 119():332-340. PubMed ID: 31499357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A machine learning potential for simulating infrared spectra of nanosilicate clusters.
    Tang Z; Bromley ST; Hammer B
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning from the density to correct total energy and forces in first principle simulations.
    Dick S; Fernandez-Serra M
    J Chem Phys; 2019 Oct; 151(14):144102. PubMed ID: 31615245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A machine learning based intramolecular potential for a flexible organic molecule.
    Cole DJ; Mones L; Csányi G
    Faraday Discuss; 2020 Dec; 224(0):247-264. PubMed ID: 32955056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol.
    Zhu X; Iyengar SS
    J Chem Theory Comput; 2022 Sep; 18(9):5125-5144. PubMed ID: 35994592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems.
    Behler J
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):12828-12840. PubMed ID: 28520235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multitask Machine Learning of Collective Variables for Enhanced Sampling of Rare Events.
    Sun L; Vandermause J; Batzner S; Xie Y; Clark D; Chen W; Kozinsky B
    J Chem Theory Comput; 2022 Apr; 18(4):2341-2353. PubMed ID: 35274958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron-Passing Neural Networks for Atomic Charge Prediction in Systems with Arbitrary Molecular Charge.
    Metcalf DP; Jiang A; Spronk SA; Cheney DL; Sherrill CD
    J Chem Inf Model; 2021 Jan; 61(1):115-122. PubMed ID: 33326247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Differentiable Neural-Network Force Field for Ionic Liquids.
    Montes-Campos H; Carrete J; Bichelmaier S; Varela LM; Madsen GKH
    J Chem Inf Model; 2022 Jan; 62(1):88-101. PubMed ID: 34941253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site of Metabolism Prediction Based on ab initio Derived Atom Representations.
    Finkelmann AR; Göller AH; Schneider G
    ChemMedChem; 2017 Apr; 12(8):606-612. PubMed ID: 28322513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitor-Based Spiking Recurrent Network for the Representation of Complex Dynamic Patterns.
    Hu R; Huang Q; Wang H; He J; Chang S
    Int J Neural Syst; 2019 Oct; 29(8):1950006. PubMed ID: 30854906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.
    Hansen K; Biegler F; Ramakrishnan R; Pronobis W; von Lilienfeld OA; Müller KR; Tkatchenko A
    J Phys Chem Lett; 2015 Jun; 6(12):2326-31. PubMed ID: 26113956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.