These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 31397626)
1. Identification and characterization of maize Zhang Z; Guo J; Zhao Y; Chen J Plant Signal Behav; 2019; 14(10):e1651604. PubMed ID: 31397626 [TBL] [Abstract][Full Text] [Related]
2. Maize requires arogenate dehydratase 2 for resistance to Ustilago maydis and plant development. Ren RC; Kong LG; Zheng GM; Zhao YJ; Jiang X; Wu JW; Liu C; Chu J; Ding XH; Zhang XS; Wang GF; Zhao XY Plant Physiol; 2024 May; 195(2):1642-1659. PubMed ID: 38431524 [TBL] [Abstract][Full Text] [Related]
3. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis. van der Linde K; Doehlemann G Methods Mol Biol; 2013; 975():47-60. PubMed ID: 23386294 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptome profiling identifies maize line specificity of fungal effectors in the maize-Ustilago maydis interaction. Schurack S; Depotter JRL; Gupta D; Thines M; Doehlemann G Plant J; 2021 May; 106(3):733-752. PubMed ID: 33570802 [TBL] [Abstract][Full Text] [Related]
5. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. van der Linde K; Kastner C; Kumlehn J; Kahmann R; Doehlemann G New Phytol; 2011 Jan; 189(2):471-83. PubMed ID: 21039559 [TBL] [Abstract][Full Text] [Related]
6. Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Basse CW Plant Physiol; 2005 Jul; 138(3):1774-84. PubMed ID: 15980197 [TBL] [Abstract][Full Text] [Related]
7. Combined analysis of genome-wide expression profiling of maize (Zea mays L.) leaves infected with Ustilago maydis. Wang J; Zhang Y; Du J; Pan X; Ma L; Shao M; Guo X Genome; 2018 Jul; 61(7):505-513. PubMed ID: 29800531 [TBL] [Abstract][Full Text] [Related]
8. Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays). Pan JJ; Baumgarten AM; May G New Phytol; 2008; 178(1):147-156. PubMed ID: 18194146 [TBL] [Abstract][Full Text] [Related]
9. How to make a tumour: cell type specific dissection of Ustilago maydis-induced tumour development in maize leaves. Matei A; Ernst C; Günl M; Thiele B; Altmüller J; Walbot V; Usadel B; Doehlemann G New Phytol; 2018 Mar; 217(4):1681-1695. PubMed ID: 29314018 [TBL] [Abstract][Full Text] [Related]
10. Establishment of compatibility in the Ustilago maydis/maize pathosystem. Doehlemann G; Wahl R; Vranes M; de Vries RP; Kämper J; Kahmann R J Plant Physiol; 2008 Jan; 165(1):29-40. PubMed ID: 17905472 [TBL] [Abstract][Full Text] [Related]
11. A rapid and efficient method for assessing pathogenicity of ustilago maydis on maize and teosinte lines. Chavan S; Smith SM J Vis Exp; 2014 Jan; (83):e50712. PubMed ID: 24430201 [TBL] [Abstract][Full Text] [Related]
12. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. van der Linde K; Hemetsberger C; Kastner C; Kaschani F; van der Hoorn RA; Kumlehn J; Doehlemann G Plant Cell; 2012 Mar; 24(3):1285-300. PubMed ID: 22454455 [TBL] [Abstract][Full Text] [Related]
13. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Rate DN; Cuenca JV; Bowman GR; Guttman DS; Greenberg JT Plant Cell; 1999 Sep; 11(9):1695-708. PubMed ID: 10488236 [TBL] [Abstract][Full Text] [Related]
14. Ustilago maydis as a Pathogen. Brefort T; Doehlemann G; Mendoza-Mendoza A; Reissmann S; Djamei A; Kahmann R Annu Rev Phytopathol; 2009; 47():423-45. PubMed ID: 19400641 [TBL] [Abstract][Full Text] [Related]
15. Genome-Wide Characterization of the Maize ( Wang Y; Li W; Qu J; Li F; Du W; Weng J Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834371 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction. Jasso-Robles FI; Jiménez-Bremont JF; Becerra-Flora A; Juárez-Montiel M; Gonzalez ME; Pieckenstain FL; García de la Cruz RF; Rodríguez-Kessler M Plant Physiol Biochem; 2016 May; 102():115-24. PubMed ID: 26926794 [TBL] [Abstract][Full Text] [Related]
17. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation. Kretschmer M; Croll D; Kronstad JW Mol Plant Pathol; 2017 Dec; 18(9):1222-1237. PubMed ID: 27564861 [TBL] [Abstract][Full Text] [Related]
18. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Lu H; Rate DN; Song JT; Greenberg JT Plant Cell; 2003 Oct; 15(10):2408-20. PubMed ID: 14507999 [TBL] [Abstract][Full Text] [Related]
19. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. Mueller AN; Ziemann S; Treitschke S; Aßmann D; Doehlemann G PLoS Pathog; 2013 Feb; 9(2):e1003177. PubMed ID: 23459172 [TBL] [Abstract][Full Text] [Related]
20. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. Doehlemann G; van der Linde K; Assmann D; Schwammbach D; Hof A; Mohanty A; Jackson D; Kahmann R PLoS Pathog; 2009 Feb; 5(2):e1000290. PubMed ID: 19197359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]