These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31397957)
1. ST2 blockade mitigates peritoneal fibrosis induced by TGF-β and high glucose. Kim YC; Kim KH; Lee S; Jo JW; Park JY; Park MS; Tsogbadrakh B; Lee JP; Lee JW; Kim DK; Oh KH; Jang IJ; Kim YS; Cha RH; Yang SH J Cell Mol Med; 2019 Oct; 23(10):6872-6884. PubMed ID: 31397957 [TBL] [Abstract][Full Text] [Related]
2. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis. Shi Y; Tao M; Wang Y; Zang X; Ma X; Qiu A; Zhuang S; Liu N J Pathol; 2020 Jan; 250(1):79-94. PubMed ID: 31579944 [TBL] [Abstract][Full Text] [Related]
3. Effects of TGF-β1 Receptor Inhibitor GW788388 on the Epithelial to Mesenchymal Transition of Peritoneal Mesothelial Cells. Lho Y; Do JY; Heo JY; Kim AY; Kim SW; Kang SH Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33947038 [TBL] [Abstract][Full Text] [Related]
4. Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1). Zhao JL; Guo MZ; Zhu JJ; Zhang T; Min DY Cell Mol Biol Lett; 2019; 24():32. PubMed ID: 31143210 [TBL] [Abstract][Full Text] [Related]
5. Expression and significance of SIRT6 in human peritoneal dialysis effluents and peritoneal mesothelial cells. Shi SS; Zhang YQ; Zhang LQ; Li YF; Zhou XS; Li RS Int Urol Nephrol; 2024 Aug; 56(8):2659-2670. PubMed ID: 38483736 [TBL] [Abstract][Full Text] [Related]
6. Nitro-oleic acid inhibits the high glucose-induced epithelial-mesenchymal transition in peritoneal mesothelial cells and attenuates peritoneal fibrosis. Su W; Wang H; Feng Z; Sun J Am J Physiol Renal Physiol; 2020 Feb; 318(2):F457-F467. PubMed ID: 31760768 [TBL] [Abstract][Full Text] [Related]
7. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. Yang X; Bao M; Fang Y; Yu X; Ji J; Ding X J Transl Med; 2021 Jun; 19(1):283. PubMed ID: 34193173 [TBL] [Abstract][Full Text] [Related]
8. TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Kariya T; Nishimura H; Mizuno M; Suzuki Y; Matsukawa Y; Sakata F; Maruyama S; Takei Y; Ito Y Am J Physiol Renal Physiol; 2018 Feb; 314(2):F167-F180. PubMed ID: 28978530 [TBL] [Abstract][Full Text] [Related]
9. Autophagy promotes fibrosis and apoptosis in the peritoneum during long-term peritoneal dialysis. Wu J; Xing C; Zhang L; Mao H; Chen X; Liang M; Wang F; Ren H; Cui H; Jiang A; Wang Z; Zou M; Ji Y J Cell Mol Med; 2018 Feb; 22(2):1190-1201. PubMed ID: 29077259 [TBL] [Abstract][Full Text] [Related]
10. IL-6 Yang X; Yan H; Jiang N; Yu Z; Yuan J; Ni Z; Fang W Am J Physiol Renal Physiol; 2020 Feb; 318(2):F338-F353. PubMed ID: 31841386 [TBL] [Abstract][Full Text] [Related]
11. Serum response factor accelerates the high glucose-induced Epithelial-to-Mesenchymal Transition (EMT) via snail signaling in human peritoneal mesothelial cells. He L; Lou W; Ji L; Liang W; Zhou M; Xu G; Zhao L; Huang C; Li R; Wang H; Chen X; Sun S PLoS One; 2014; 9(10):e108593. PubMed ID: 25303231 [TBL] [Abstract][Full Text] [Related]
12. WNT signaling is required for peritoneal membrane angiogenesis. Padwal M; Cheng G; Liu L; Boivin F; Gangji AS; Brimble KS; Bridgewater D; Margetts PJ Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1036-F1045. PubMed ID: 29363326 [TBL] [Abstract][Full Text] [Related]
13. Empagliflozin attenuates epithelial-to-mesenchymal transition through senescence in peritoneal dialysis. Lho Y; Park Y; Do JY; Kim AY; Park YE; Kang SH Am J Physiol Renal Physiol; 2024 Sep; 327(3):F363-F372. PubMed ID: 38961839 [TBL] [Abstract][Full Text] [Related]
14. SGLT2 Inhibition by Intraperitoneal Dapagliflozin Mitigates Peritoneal Fibrosis and Ultrafiltration Failure in a Mouse Model of Chronic Peritoneal Exposure to High-Glucose Dialysate. Balzer MS; Rong S; Nordlohne J; Zemtsovski JD; Schmidt S; Stapel B; Bartosova M; von Vietinghoff S; Haller H; Schmitt CP; Shushakova N Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33228017 [TBL] [Abstract][Full Text] [Related]
15. CX3CL1-CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Helmke A; Nordlohne J; Balzer MS; Dong L; Rong S; Hiss M; Shushakova N; Haller H; von Vietinghoff S Kidney Int; 2019 Jun; 95(6):1405-1417. PubMed ID: 30948201 [TBL] [Abstract][Full Text] [Related]
16. Tamoxifen attenuates dialysate-induced peritoneal fibrosis by inhibiting GSK-3β/β-catenin axis activation. Yan P; Tang H; Chen X; Ji S; Jin W; Zhang J; Shen J; Deng H; Zhao X; Shen Q; Huang H Biosci Rep; 2018 Dec; 38(6):. PubMed ID: 30061174 [TBL] [Abstract][Full Text] [Related]
17. Emodin ameliorates glucose-induced morphologic abnormalities and synthesis of transforming growth factor beta1 and fibronectin by human peritoneal mesothelial cells. Yung S; Liu ZH; Lai KN; Li LS; Chan TM Perit Dial Int; 2001; 21 Suppl 3():S41-7. PubMed ID: 11887862 [TBL] [Abstract][Full Text] [Related]
18. Histone deacetylase 8 inhibition prevents the progression of peritoneal fibrosis by counteracting the epithelial-mesenchymal transition and blockade of M2 macrophage polarization. Zhou X; Chen H; Shi Y; Li J; Ma X; Du L; Hu Y; Tao M; Zhong Q; Yan D; Zhuang S; Liu N Front Immunol; 2023; 14():1137332. PubMed ID: 36911746 [TBL] [Abstract][Full Text] [Related]
19. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor. Li X; Liu H; Sun L; Zhou X; Yuan X; Chen Y; Liu F; Liu Y; Xiao L J Cell Mol Med; 2019 Apr; 23(4):2372-2383. PubMed ID: 30693641 [TBL] [Abstract][Full Text] [Related]
20. MiR-200a negatively regulates TGF-β Guo R; Hao G; Bao Y; Xiao J; Zhan X; Shi X; Luo L; Zhou J; Chen Q; Wei X Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1087-F1095. PubMed ID: 29357421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]