BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31398118)

  • 1. Spectral Quantification of Nonlinear Elasticity Using Acoustoelasticity and Shear-Wave Dispersion.
    Otesteanu CF; Chintada BR; Rominger MB; Sanabria SJ; Goksel O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Dec; 66(12):1845-1855. PubMed ID: 31398118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Characterization of Tissue Viscoelasticity With Acoustoelastic Attenuation of Shear Waves.
    Chintada BR; Rau R; Goksel O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):38-53. PubMed ID: 34398752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity.
    Deffieux T; Montaldo G; Tanter M; Fink M
    IEEE Trans Med Imaging; 2009 Mar; 28(3):313-22. PubMed ID: 19244004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Acoustoelasticity to Evaluate Nonlinear Modulus in Ex Vivo Kidneys.
    Aristizabal S; Amador Carrascal C; Nenadic IZ; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Feb; 65(2):188-200. PubMed ID: 29389651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
    Latorre-Ossa H; Gennisson JL; De Brosses E; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):833-9. PubMed ID: 22547295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of shear wave speed dispersion in the placenta by transient elastography: A preliminary ex vivo study.
    Simon EG; Callé S; Perrotin F; Remenieras JP
    PLoS One; 2018; 13(4):e0194309. PubMed ID: 29621270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustoelasticity in transversely isotropic soft tissues: Quantification of muscle nonlinear elasticity.
    Bied M; Gennisson JL
    J Acoust Soc Am; 2021 Dec; 150(6):4489. PubMed ID: 34972304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement.
    Kijanka P; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):483-496. PubMed ID: 31603777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear Wave Speed Measurements Using Crawling Wave Sonoelastography and Single Tracking Location Shear Wave Elasticity Imaging for Tissue Characterization.
    Ormachea J; Lavarello RJ; McAleavey SA; Parker KJ; Castaneda B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1351-1360. PubMed ID: 27295662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Tissue Microstructure on Shear Wave Speed Measurements in Plane Shear Wave Elastography: A Computational Study in Lossless Fibrotic Liver Media.
    Wang Y; Jiang J
    Ultrason Imaging; 2018 Jan; 40(1):49-63. PubMed ID: 28720056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources of Variability in Shear Wave Speed and Dispersion Quantification with Ultrasound Elastography: A Phantom Study.
    Korta Martiartu N; Nambiar S; Nascimento Kirchner I; Paverd C; Cester D; Frauenfelder T; Ruby L; Rominger MB
    Ultrasound Med Biol; 2021 Dec; 47(12):3529-3542. PubMed ID: 34548187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Point Method For Robust Shear Wave Phase Velocity Dispersion Estimation of Viscoelastic Materials.
    Kijanka P; Ambrozinski L; Urban MW
    Ultrasound Med Biol; 2019 Sep; 45(9):2540-2553. PubMed ID: 31230912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex vivo bovine liver nonlinear viscoelastic properties: MR elastography and rheological measurements.
    Jugé L; Foley P; Hatt A; Yeung J; Bilston LE
    J Mech Behav Biomed Mater; 2023 Feb; 138():105638. PubMed ID: 36623403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Frequency-Shift Method to Measure Shear-Wave Attenuation in Soft Tissues.
    Bernard S; Kazemirad S; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):514-524. PubMed ID: 27913343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing acoustoelastic effect of shear wave elastography data for perfused and hydrated soft tissues using a macromolecular network inspired model.
    Rosen D; Jiang J
    J Biomech; 2019 Dec; 97():109370. PubMed ID: 31606128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms: repeatability and reproducibility using two ultrasound systems.
    Dillman JR; Chen S; Davenport MS; Zhao H; Urban MW; Song P; Watcharotone K; Carson PL
    Pediatr Radiol; 2015 Mar; 45(3):376-85. PubMed ID: 25249389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repeatability and Agreement of Shear Wave Speed Measurements in Phantoms and Human Livers Across 6 Ultrasound 2-Dimensional Shear Wave Elastography Systems.
    Gilligan LA; Trout AT; Bennett P; Dillman JR
    Invest Radiol; 2020 Apr; 55(4):191-199. PubMed ID: 31977604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.