These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 3139813)
1. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. Sparrow CP; Parthasarathy S; Steinberg D J Lipid Res; 1988 Jun; 29(6):745-53. PubMed ID: 3139813 [TBL] [Abstract][Full Text] [Related]
2. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Parthasarathy S; Steinbrecher UP; Barnett J; Witztum JL; Steinberg D Proc Natl Acad Sci U S A; 1985 May; 82(9):3000-4. PubMed ID: 3857630 [TBL] [Abstract][Full Text] [Related]
3. Immunological and functional properties of in vitro oxidized low density lipoprotein. Harduin P; Tailleux A; Lestavel S; Clavey V; Fruchart JC; Fievet C J Lipid Res; 1995 May; 36(5):919-30. PubMed ID: 7658164 [TBL] [Abstract][Full Text] [Related]
4. Potent modification of low density lipoprotein by group X secretory phospholipase A2 is linked to macrophage foam cell formation. Hanasaki K; Yamada K; Yamamoto S; Ishimoto Y; Saiga A; Ono T; Ikeda M; Notoya M; Kamitani S; Arita H J Biol Chem; 2002 Aug; 277(32):29116-24. PubMed ID: 12021277 [TBL] [Abstract][Full Text] [Related]
5. Activation of 15-lipoxygenase by low density lipoprotein in vascular endothelial cells. Relationship to the oxidative modification of low density lipoprotein. Derian CK; Lewis DF Prostaglandins Leukot Essent Fatty Acids; 1992 Jan; 45(1):49-57. PubMed ID: 1546066 [TBL] [Abstract][Full Text] [Related]
6. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Parthasarathy S; Barnett J; Fong LG Biochim Biophys Acta; 1990 May; 1044(2):275-83. PubMed ID: 2344447 [TBL] [Abstract][Full Text] [Related]
7. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Parthasarathy S; Wieland E; Steinberg D Proc Natl Acad Sci U S A; 1989 Feb; 86(3):1046-50. PubMed ID: 2536929 [TBL] [Abstract][Full Text] [Related]
8. Role of endothelial cells and their products in the modification of low-density lipoproteins. van Hinsbergh VW; Scheffer M; Havekes L; Kempen HJ Biochim Biophys Acta; 1986 Aug; 878(1):49-64. PubMed ID: 3730414 [TBL] [Abstract][Full Text] [Related]
9. Phospholipase A2-modified LDL is taken up at enhanced rate by macrophages. Aviram M; Maor I Biochem Biophys Res Commun; 1992 May; 185(1):465-72. PubMed ID: 1599485 [TBL] [Abstract][Full Text] [Related]
10. Oxidative modification of LDL: comparison between cell-mediated and copper-mediated modification. Parthasarathy S; Fong LG; Quinn MT; Steinberg D Eur Heart J; 1990 Aug; 11 Suppl E():83-7. PubMed ID: 2121485 [TBL] [Abstract][Full Text] [Related]
11. Recognition of solubilized apoproteins from delipidated, oxidized low density lipoprotein (LDL) by the acetyl-LDL receptor. Parthasarathy S; Fong LG; Otero D; Steinberg D Proc Natl Acad Sci U S A; 1987 Jan; 84(2):537-40. PubMed ID: 3467373 [TBL] [Abstract][Full Text] [Related]
12. Cellular oxidative modification of low density lipoprotein does not require lipoxygenases. Sparrow CP; Olszewski J Proc Natl Acad Sci U S A; 1992 Jan; 89(1):128-31. PubMed ID: 1729678 [TBL] [Abstract][Full Text] [Related]
13. Probucol inhibits oxidative modification of low density lipoprotein. Parthasarathy S; Young SG; Witztum JL; Pittman RC; Steinberg D J Clin Invest; 1986 Feb; 77(2):641-4. PubMed ID: 3944273 [TBL] [Abstract][Full Text] [Related]
14. Lipopolysaccharide enhances oxidative modification of low density lipoprotein by copper ions, endothelial and smooth muscle cells. Maziere C; Conte MA; Dantin F; Maziere JC Atherosclerosis; 1999 Mar; 143(1):75-80. PubMed ID: 10208481 [TBL] [Abstract][Full Text] [Related]
15. Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism. Steinbrecher UP; Witztum JL; Parthasarathy S; Steinberg D Arteriosclerosis; 1987; 7(2):135-43. PubMed ID: 3107534 [TBL] [Abstract][Full Text] [Related]
16. Modification of low density lipoprotein with 4-hydroxynonenal induces uptake by macrophages. Hoff HF; O'Neil J; Chisolm GM; Cole TB; Quehenberger O; Esterbauer H; Jürgens G Arteriosclerosis; 1989; 9(4):538-49. PubMed ID: 2751482 [TBL] [Abstract][Full Text] [Related]
17. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Steinbrecher UP; Parthasarathy S; Leake DS; Witztum JL; Steinberg D Proc Natl Acad Sci U S A; 1984 Jun; 81(12):3883-7. PubMed ID: 6587396 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of low density lipoprotein particles decreases their ability to bind to human aortic proteoglycans. Dependence on oxidative modification of the lysine residues. Oörni K; Pentikäinen MO; Annila A; Kovanen PT J Biol Chem; 1997 Aug; 272(34):21303-11. PubMed ID: 9261142 [TBL] [Abstract][Full Text] [Related]
19. Extracts of human atherosclerotic lesions can modify low density lipoproteins leading to enhanced uptake by macrophages. Hoff HF; O'Neil J Atherosclerosis; 1988 Mar; 70(1-2):29-41. PubMed ID: 3355615 [TBL] [Abstract][Full Text] [Related]
20. Participation of the arachidonic acid cascade pathway in macrophage binding/uptake of oxidized low density lipoprotein. Beppu M; Watanabe M; Sunohara M; Ohishi K; Mishima E; Kawachi H; Fujii M; Kikugawa K Biol Pharm Bull; 2002 Jun; 25(6):710-7. PubMed ID: 12081134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]