These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 3139813)
21. A critical assessment of the effects of aminoguanidine and ascorbate on the oxidative modification of LDL: evidence for interference with some assays of lipoprotein oxidation by aminoguanidine. Scaccini C; Chiesa G; Jialal I J Lipid Res; 1994 Jun; 35(6):1085-92. PubMed ID: 8077847 [TBL] [Abstract][Full Text] [Related]
22. Resistance to LDL oxidative modifications of an N-terminal apolipoprotein B epitope. Gandjini H; Gambert P; Athias A; Lallemant C Atherosclerosis; 1991 Jul; 89(1):83-93. PubMed ID: 1722977 [TBL] [Abstract][Full Text] [Related]
23. Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Uchida K; Toyokuni S; Nishikawa K; Kawakishi S; Oda H; Hiai H; Stadtman ER Biochemistry; 1994 Oct; 33(41):12487-94. PubMed ID: 7918471 [TBL] [Abstract][Full Text] [Related]
24. Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apoprotein B-100. Parthasarathy S; Barnett J Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9741-5. PubMed ID: 2263624 [TBL] [Abstract][Full Text] [Related]
26. Oxidation of human low-density lipoprotein by soybean 15-lipoxygenase in combination with copper (II) or met-myoglobin. O'Leary VJ; Graham A; Stone D; Darley-Usmar VM Free Radic Biol Med; 1996; 20(4):525-32. PubMed ID: 8904293 [TBL] [Abstract][Full Text] [Related]
27. Secretory phospholipase A2 and lipoprotein lipase enhance 15-lipoxygenase-induced enzymic and nonenzymic lipid peroxidation in low-density lipoproteins. Neuzil J; Upston JM; Witting PK; Scott KF; Stocker R Biochemistry; 1998 Jun; 37(25):9203-10. PubMed ID: 9636068 [TBL] [Abstract][Full Text] [Related]
28. Lipoxygenase-mediated transformation of human low density lipoprotein to an oxidized and cytotoxic complex. Cathcart MK; McNally AK; Chisolm GM J Lipid Res; 1991 Jan; 32(1):63-70. PubMed ID: 1901344 [TBL] [Abstract][Full Text] [Related]
29. Group V secretory phospholipase A2-modified low density lipoprotein promotes foam cell formation by a SR-A- and CD36-independent process that involves cellular proteoglycans. Boyanovsky BB; van der Westhuyzen DR; Webb NR J Biol Chem; 2005 Sep; 280(38):32746-52. PubMed ID: 16040605 [TBL] [Abstract][Full Text] [Related]
30. Effects of copper and histidine on oxidative modification of low density lipoprotein and its subsequent binding to collagen. Kalant N; McCormick S; Parniak MA Arterioscler Thromb; 1991; 11(5):1322-9. PubMed ID: 1911719 [TBL] [Abstract][Full Text] [Related]
31. Lipolysis of LDL with phospholipase A2 alters the expression of selected apoB-100 epitopes and the interaction of LDL with cells. Kleinman Y; Krul ES; Burnes M; Aronson W; Pfleger B; Schonfeld G J Lipid Res; 1988 Jun; 29(6):729-43. PubMed ID: 2459282 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms involved in the in vitro modification of low density lipoprotein by human umbilical vein endothelial cells and copper ions. Cominacini L; Garbin U; De Santis A; Campagnola M; Davoli A; Pasini AF; Faccini G; Pasqualini E; Bertozzo L; Micciolo R; Pastorino AM; Lo Cascio V J Lipid Mediat Cell Signal; 1996 Jan; 13(1):19-33. PubMed ID: 8821808 [TBL] [Abstract][Full Text] [Related]
34. Oxidation of free fatty acids in low density lipoprotein by 15-lipoxygenase stimulates nonenzymic, alpha-tocopherol-mediated peroxidation of cholesteryl esters. Upston JM; Neuzil J; Witting PK; Alleva R; Stocker R J Biol Chem; 1997 Nov; 272(48):30067-74. PubMed ID: 9374483 [TBL] [Abstract][Full Text] [Related]
35. Lipid peroxidation of low density lipoprotein by human endothelial cells modifies its metabolism in vitro. Masana L; Shaikh M; La Ville A; Lewis B Rev Esp Fisiol; 1986 Mar; 42(1):99-104. PubMed ID: 3715160 [TBL] [Abstract][Full Text] [Related]
36. Oxidation of low density lipoprotein by bovine and porcine aortic endothelial cells and porcine endocardial cells in culture. Morgan J; Smith JA; Wilkins GM; Leake DS Atherosclerosis; 1993 Sep; 102(2):209-16. PubMed ID: 8251007 [TBL] [Abstract][Full Text] [Related]
37. A modification of apolipoprotein B accounts for most of the induction of macrophage growth by oxidized low density lipoprotein. Martens JS; Lougheed M; Gómez-Muñoz A; Steinbrecher UP J Biol Chem; 1999 Apr; 274(16):10903-10. PubMed ID: 10196168 [TBL] [Abstract][Full Text] [Related]
38. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Hazell LJ; Stocker R Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):165-72. PubMed ID: 8439285 [TBL] [Abstract][Full Text] [Related]
39. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. Steinbrecher UP; Lougheed M; Kwan WC; Dirks M J Biol Chem; 1989 Sep; 264(26):15216-23. PubMed ID: 2768257 [TBL] [Abstract][Full Text] [Related]
40. Melatonin inhibits oxidative modification of human low-density lipoprotein. Kelly MR; Loo G J Pineal Res; 1997 May; 22(4):203-9. PubMed ID: 9247205 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]