These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 31398430)
1. Phenotyping neurons activated in the mouse brain during restoration of salt debt. Smith CM; Cross J; Eraslan IM; Attawar A; Ch'ng S; Dhar P; Samarasinghe R; Gray L; Lawrence AJ J Chem Neuroanat; 2019 Nov; 101():101665. PubMed ID: 31398430 [TBL] [Abstract][Full Text] [Related]
2. Neuronal connections of the central amygdalar nucleus with refeeding-activated brain areas in rats. Zséli G; Vida B; Szilvásy-Szabó A; Tóth M; Lechan RM; Fekete C Brain Struct Funct; 2018 Jan; 223(1):391-414. PubMed ID: 28852859 [TBL] [Abstract][Full Text] [Related]
3. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. Ciriello J; Caverson MM; McMurray JC; Bruckschwaiger EB Neuroscience; 2013 Oct; 250():599-613. PubMed ID: 23912034 [TBL] [Abstract][Full Text] [Related]
4. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex. Geerling JC; Loewy AD J Comp Neurol; 2007 Oct; 504(4):379-403. PubMed ID: 17663450 [TBL] [Abstract][Full Text] [Related]
5. Inhibitory effect of activation of GABA(A) receptor in the central nucleus of amygdala on the sodium intake in the sodium-depleted rat. Wang Q; Li JR; Yang XJ; Chen K; Sun B; Yan JQ Neuroscience; 2012 Oct; 223():277-84. PubMed ID: 22885233 [TBL] [Abstract][Full Text] [Related]
6. High salt intake enhances swim stress-induced PVN vasopressin cell activation and active stress coping. Mitchell NC; Gilman TL; Daws LC; Toney GM Psychoneuroendocrinology; 2018 Jul; 93():29-38. PubMed ID: 29684712 [TBL] [Abstract][Full Text] [Related]
7. Chemical characterization of leptin-activated neurons in the rat brain. Elias CF; Kelly JF; Lee CE; Ahima RS; Drucker DJ; Saper CB; Elmquist JK J Comp Neurol; 2000 Jul; 423(2):261-81. PubMed ID: 10867658 [TBL] [Abstract][Full Text] [Related]
8. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice. Smith CM; Walker LL; Leeboonngam T; McKinley MJ; Denton DA; Lawrence AJ Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13893-13898. PubMed ID: 27849613 [TBL] [Abstract][Full Text] [Related]
9. Brain regions influenced by the lateral parabrachial nucleus in angiotensin II-induced water intake. Davern PJ; McKinley MJ Neuroscience; 2013 Nov; 252():410-9. PubMed ID: 23994596 [TBL] [Abstract][Full Text] [Related]
10. Salt Appetite, and the Influence of Opioids. Smith CM; Lawrence AJ Neurochem Res; 2018 Jan; 43(1):12-18. PubMed ID: 28646260 [TBL] [Abstract][Full Text] [Related]
11. Importance of the central nucleus of the amygdala on sodium intake caused by deactivation of lateral parabrachial nucleus. Andrade-Franzé GM; Andrade CA; Gasparini S; De Luca LA; De Paula PM; Colombari DS; Colombari E; Menani JV Brain Res; 2015 Nov; 1625():238-45. PubMed ID: 26358148 [TBL] [Abstract][Full Text] [Related]
12. Chlordiazepoxide-induced expression of c-Fos in the central extended amygdala and other brain regions of the C57BL/6J and DBA/2J inbred mouse strains: relationships to mechanisms of ethanol action. Hitzemann B; Hitzemann R Alcohol Clin Exp Res; 1999 Jul; 23(7):1158-72. PubMed ID: 10443981 [TBL] [Abstract][Full Text] [Related]
13. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala. McDougall SJ; Guo H; Andresen MC J Physiol; 2017 Feb; 595(3):901-917. PubMed ID: 27616729 [TBL] [Abstract][Full Text] [Related]
14. Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse. Ye J; Veinante P Brain Struct Funct; 2019 Apr; 224(3):1067-1095. PubMed ID: 30610368 [TBL] [Abstract][Full Text] [Related]
15. Molecular, Morphological, and Functional Characterization of Corticotropin-Releasing Factor Receptor 1-Expressing Neurons in the Central Nucleus of the Amygdala. Wolfe SA; Sidhu H; Patel RR; Kreifeldt M; D'Ambrosio SR; Contet C; Roberto M eNeuro; 2019; 6(3):. PubMed ID: 31167849 [TBL] [Abstract][Full Text] [Related]
16. Lesion of the lateral parabrachial nucleus attenuates the anorectic effect of peripheral amylin and CCK. Becskei C; Grabler V; Edwards GL; Riediger T; Lutz TA Brain Res; 2007 Aug; 1162():76-84. PubMed ID: 17617389 [TBL] [Abstract][Full Text] [Related]
17. Organization of peptidergic and catecholaminergic efferents from the nucleus of the solitary tract to the rat amygdala. Zardetto-Smith AM; Gray TS Brain Res Bull; 1990 Dec; 25(6):875-87. PubMed ID: 1981174 [TBL] [Abstract][Full Text] [Related]
18. Lateral parabrachial afferent areas and serotonin mechanisms activated by volume expansion. Margatho LO; Godino A; Oliveira FR; Vivas L; Antunes-Rodrigues J J Neurosci Res; 2008 Dec; 86(16):3613-21. PubMed ID: 18683241 [TBL] [Abstract][Full Text] [Related]
19. Distribution of galaninergic immunoreactivity in the brain of the mouse. Pérez SE; Wynick D; Steiner RA; Mufson EJ J Comp Neurol; 2001 May; 434(2):158-85. PubMed ID: 11331523 [TBL] [Abstract][Full Text] [Related]
20. Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. Chieng BC; Christie MJ; Osborne PB J Comp Neurol; 2006 Aug; 497(6):910-27. PubMed ID: 16802333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]