BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31398828)

  • 1. Interplay between Residual Protease Activity in Commercial Lactases and the Subsequent Digestibility of β-Casein in a Model System.
    Zhao D; Le TT; Larsen LB; Nian Y; Wang C; Li C; Zhou G
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31398828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Storage on Lactase-Treated β-Casein and β-Lactoglobulin with Respect to Bitter Peptide Formation and Subsequent in Vitro Digestibility.
    Zhao D; Le TT; Nielsen SD; Larsen LB
    J Agric Food Chem; 2017 Sep; 65(38):8409-8417. PubMed ID: 28885022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and sensory changes during shelf-life of UHT hydrolyzed-lactose milk produced by "in batch" system employing different commercial lactase preparations.
    Bottiroli R; Dario Troise A; Aprea E; Fogliano V; Vitaglione P; Gasperi F
    Food Res Int; 2020 Oct; 136():109552. PubMed ID: 32846602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and proteolysis-derived changes during long-term storage of lactose-hydrolyzed ultrahigh-temperature (UHT) milk.
    Jansson T; Jensen HB; Sundekilde UK; Clausen MR; Eggers N; Larsen LB; Ray C; Andersen HJ; Bertram HC
    J Agric Food Chem; 2014 Nov; 62(46):11270-8. PubMed ID: 25356780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digestibility of glycated milk proteins and the peptidomics of their in vitro digests.
    Zhao D; Li L; Le TT; Larsen LB; Xu D; Jiao W; Sheng B; Li B; Zhang X
    J Sci Food Agric; 2019 Apr; 99(6):3069-3077. PubMed ID: 30511448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis.
    Nongonierma AB; FitzGerald RJ
    Food Chem; 2014 Feb; 145():845-52. PubMed ID: 24128555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro digestion of purified β-casein variants A(1), A(2), B, and I: effects on antioxidant and angiotensin-converting enzyme inhibitory capacity.
    Petrat-Melin B; Andersen P; Rasmussen JT; Poulsen NA; Larsen LB; Young JF
    J Dairy Sci; 2015 Jan; 98(1):15-26. PubMed ID: 25465543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo endogenous proteolysis yielding beta-casein derived bioactive beta-casomorphin peptides in human breast milk for infant nutrition.
    Enjapoori AK; Kukuljan S; Dwyer KM; Sharp JA
    Nutrition; 2019 Jan; 57():259-267. PubMed ID: 30199719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion.
    Abubakar A; Saito T; Kitazawa H; Kawai Y; Itoh T
    J Dairy Sci; 1998 Dec; 81(12):3131-8. PubMed ID: 9891260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersible Biopolymer Particles Loaded with Lactase as a Potential Delivery System To Control Lactose Hydrolysis in Milk.
    Dong L; Zhong Q
    J Agric Food Chem; 2019 Jun; 67(23):6559-6568. PubMed ID: 31099562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purified lactases versus whole-cell lactases-the winner takes it all.
    Dorau R; Jensen PR; Solem C
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):4943-4955. PubMed ID: 34115184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro digestibility of bovine β-casein with simulated and human oral and gastrointestinal fluids. Identification and IgE-reactivity of the resultant peptides.
    Benedé S; López-Expósito I; Giménez G; Grishina G; Bardina L; Sampson HA; Molina E; López-Fandiño R
    Food Chem; 2014 Jan; 143():514-21. PubMed ID: 24054275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-in-Oil-in-Water Emulsions for Delivery of Lactase To Control in Vitro Hydrolysis of Lactose in Milk.
    Zhang Y; Zhong Q
    J Agric Food Chem; 2017 Nov; 65(43):9522-9528. PubMed ID: 28981265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycation sites and bioactivity of lactose-glycated caseinate hydrolysate in lipopolysaccharide-injured IEC-6 cells.
    Shi J; Fu Y; Zhao XH; Lametsch R
    J Dairy Sci; 2021 Feb; 104(2):1351-1363. PubMed ID: 33309364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of genetic variants and sialylation on in vitro digestibility of purified κ-casein.
    Sheng B; Nielsen SD; Glantz M; Paulsson M; Poulsen NA; Larsen LB
    J Dairy Sci; 2022 Apr; 105(4):2803-2814. PubMed ID: 35151483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptides surviving the simulated gastrointestinal digestion of milk proteins: biological and toxicological implications.
    Picariello G; Ferranti P; Fierro O; Mamone G; Caira S; Di Luccia A; Monica S; Addeo F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Feb; 878(3-4):295-308. PubMed ID: 19962948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of beta-casein fragments in cold-stored and curdled river buffalo (Bubalus bubalis L.) milk.
    Di Luccia A; Picariello G; Trani A; Alviti G; Loizzo P; Faccia M; Addeo F
    J Dairy Sci; 2009 Apr; 92(4):1319-29. PubMed ID: 19307613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of PTR-TOF-MS for the quality assessment of lactose-free milk: Effect of storage time and employment of different lactase preparations.
    Bottiroli R; Pedrotti M; Aprea E; Biasioli F; Fogliano V; Gasperi F
    J Mass Spectrom; 2020 Nov; 55(11):e4505. PubMed ID: 32096591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmin digestion of photooxidized milk proteins.
    Dalsgaard TK; Heegaard CW; Larsen LB
    J Dairy Sci; 2008 Jun; 91(6):2175-83. PubMed ID: 18487639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmin activity in UHT milk: relationship between proteolysis, age gelation, and bitterness.
    Rauh VM; Johansen LB; Ipsen R; Paulsson M; Larsen LB; Hammershøj M
    J Agric Food Chem; 2014 Jul; 62(28):6852-60. PubMed ID: 24964203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.