These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31399036)

  • 41. Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation.
    Bazin J; Baerenfaller K; Gosai SJ; Gregory BD; Crespi M; Bailey-Serres J
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E10018-E10027. PubMed ID: 29087317
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Translational regulation via 5' mRNA leader sequences revealed by mutational analysis of the Arabidopsis translation initiation factor subunit eIF3h.
    Kim TH; Kim BH; Yahalom A; Chamovitz DA; von Arnim AG
    Plant Cell; 2004 Dec; 16(12):3341-56. PubMed ID: 15548739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function.
    Del Campo C; Bartholomäus A; Fedyunin I; Ignatova Z
    PLoS Genet; 2015 Oct; 11(10):e1005613. PubMed ID: 26495981
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae.
    Abastado JP; Miller PF; Hinnebusch AG
    New Biol; 1991 May; 3(5):511-24. PubMed ID: 1883814
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism and regulation of translation in C. elegans.
    Rhoads RE; Dinkova TD; Korneeva NL
    WormBook; 2006 Jan; ():1-18. PubMed ID: 18050488
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but -2 in budding yeast.
    Ivanov IP; Gesteland RF; Matsufuji S; Atkins JF
    RNA; 1998 Oct; 4(10):1230-8. PubMed ID: 9769097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Universally increased mRNA stability downstream of the translation initiation site in eukaryotes and prokaryotes.
    Mao Y; Wang W; Cheng N; Li Q; Tao S
    Gene; 2013 Apr; 517(2):230-5. PubMed ID: 23313297
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Stem-Loop Structure in
    Xu Y; Ju HJ; DeBlasio S; Carino EJ; Johnson R; MacCoss MJ; Heck M; Miller WA; Gray SM
    J Virol; 2018 Jun; 92(11):. PubMed ID: 29514911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3' UTR variants.
    Chen JM; Férec C; Cooper DN
    Hum Genet; 2006 Oct; 120(3):301-33. PubMed ID: 16807757
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The regulatory potential of upstream open reading frames in eukaryotic gene expression.
    Wethmar K
    Wiley Interdiscip Rev RNA; 2014; 5(6):765-78. PubMed ID: 24995549
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequence and structural features associated with translational initiator regions in yeast--a review.
    Cigan AM; Donahue TF
    Gene; 1987; 59(1):1-18. PubMed ID: 3325335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for regulation of reinitiation in translational control of GCN4 mRNA.
    Hinnebusch AG; Jackson BM; Mueller PP
    Proc Natl Acad Sci U S A; 1988 Oct; 85(19):7279-83. PubMed ID: 3050993
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The extent of ribosome queuing in budding yeast.
    Diament A; Feldman A; Schochet E; Kupiec M; Arava Y; Tuller T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005951. PubMed ID: 29377894
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioinformatic analysis of the link between gene composition and expressivity in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Fuglsang A
    Antonie Van Leeuwenhoek; 2004 Aug; 86(2):135-47. PubMed ID: 15280647
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In-depth analysis of cis-determinants that either promote or inhibit reinitiation on GCN4 mRNA after translation of its four short uORFs.
    Gunišová S; Beznosková P; Mohammad MP; Vlčková V; Valášek LS
    RNA; 2016 Apr; 22(4):542-58. PubMed ID: 26822200
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA.
    Ryckelynck M; Masquida B; Giegé R; Frugier M
    J Mol Biol; 2005 Dec; 354(3):614-29. PubMed ID: 16257416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ribosome profiling: a tool for quantitative evaluation of dynamics in mRNA translation.
    Juntawong P; Hummel M; Bazin J; Bailey-Serres J
    Methods Mol Biol; 2015; 1284():139-73. PubMed ID: 25757771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel translational control mechanism involving RNA structures within coding sequences.
    Jungfleisch J; Nedialkova DD; Dotu I; Sloan KE; Martinez-Bosch N; Brüning L; Raineri E; Navarro P; Bohnsack MT; Leidel SA; Díez J
    Genome Res; 2017 Jan; 27(1):95-106. PubMed ID: 27821408
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Folding free energies of 5'-UTRs impact post-transcriptional regulation on a genomic scale in yeast.
    Ringnér M; Krogh M
    PLoS Comput Biol; 2005 Dec; 1(7):e72. PubMed ID: 16355254
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A.
    Sen ND; Zhou F; Ingolia NT; Hinnebusch AG
    Genome Res; 2015 Aug; 25(8):1196-205. PubMed ID: 26122911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.