BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31399574)

  • 1. The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range.
    Girstmair H; Tippel F; Lopez A; Tych K; Stein F; Haberkant P; Schmid PWN; Helm D; Rief M; Sattler M; Buchner J
    Nat Commun; 2019 Aug; 10(1):3626. PubMed ID: 31399574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation.
    Mercier R; Wolmarans A; Schubert J; Neuweiler H; Johnson JL; LaPointe P
    Nat Commun; 2019 Mar; 10(1):1273. PubMed ID: 30894538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.
    Blacklock K; Verkhivker GM
    PLoS One; 2014; 9(1):e86547. PubMed ID: 24466147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex.
    Ali MM; Roe SM; Vaughan CK; Meyer P; Panaretou B; Piper PW; Prodromou C; Pearl LH
    Nature; 2006 Apr; 440(7087):1013-7. PubMed ID: 16625188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p.
    Bali M; Zhang B; Morano KA; Michels CA
    J Biol Chem; 2003 Nov; 278(48):47441-8. PubMed ID: 14500708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the regulation of Hsp90 by the co-chaperone Sti1.
    Lee CT; Graf C; Mayer FJ; Richter SM; Mayer MP
    EMBO J; 2012 Mar; 31(6):1518-28. PubMed ID: 22354036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hsp90 is regulated by a switch point in the C-terminal domain.
    Retzlaff M; Stahl M; Eberl HC; Lagleder S; Beck J; Kessler H; Buchner J
    EMBO Rep; 2009 Oct; 10(10):1147-53. PubMed ID: 19696785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of cycle timing for the function of the molecular chaperone Hsp90.
    Zierer BK; Rübbelke M; Tippel F; Madl T; Schopf FH; Rutz DA; Richter K; Sattler M; Buchner J
    Nat Struct Mol Biol; 2016 Nov; 23(11):1020-1028. PubMed ID: 27723736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast.
    Synoradzki K; Bieganowski P
    Biochim Biophys Acta; 2015 Feb; 1853(2):445-52. PubMed ID: 25486457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle.
    Richter K; Walter S; Buchner J
    J Mol Biol; 2004 Oct; 342(5):1403-13. PubMed ID: 15364569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural elements in the flexible tail of the co-chaperone p23 coordinate client binding and progression of the Hsp90 chaperone cycle.
    Biebl MM; Lopez A; Rehn A; Freiburger L; Lawatscheck J; Blank B; Sattler M; Buchner J
    Nat Commun; 2021 Feb; 12(1):828. PubMed ID: 33547294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Roe SM; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Mar; 23(6):1402-10. PubMed ID: 15039704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of the Hsp90 co-chaperone Cpr7 from Saccharomyces cerevisiae.
    Qiu Y; Ge Q; Wang M; Lv H; Ebrahimi M; Niu L; Teng M; Li X
    J Struct Biol; 2017 Mar; 197(3):379-387. PubMed ID: 28192191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and physical interaction between yeast Hsp90 and Hsp70.
    Kravats AN; Hoskins JR; Reidy M; Johnson JL; Doyle SM; Genest O; Masison DC; Wickner S
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2210-E2219. PubMed ID: 29463764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hsp90 Chaperone:
    Lee BL; Rashid S; Wajda B; Wolmarans A; LaPointe P; Spyracopoulos L
    Biochemistry; 2019 Apr; 58(14):1869-1877. PubMed ID: 30869872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp90 and co-chaperones twist the functions of diverse client proteins.
    Zuehlke A; Johnson JL
    Biopolymers; 2010 Mar; 93(3):211-7. PubMed ID: 19697319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Rotation of the N-terminal Domain of Hsp90 Is Important for Interaction with Some but Not All Client Proteins.
    Daturpalli S; Knieß RA; Lee CT; Mayer MP
    J Mol Biol; 2017 May; 429(9):1406-1423. PubMed ID: 28363677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.
    Prince TL; Kijima T; Tatokoro M; Lee S; Tsutsumi S; Yim K; Rivas C; Alarcon S; Schwartz H; Khamit-Kush K; Scroggins BT; Beebe K; Trepel JB; Neckers L
    PLoS One; 2015; 10(10):e0141786. PubMed ID: 26517842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy.
    Jahn M; Tych K; Girstmair H; Steinmaßl M; Hugel T; Buchner J; Rief M
    Structure; 2018 Jan; 26(1):96-105.e4. PubMed ID: 29276035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.