These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31399630)

  • 1. Efficient derivation of knock-out and knock-in rats using embryos obtained by in vitro fertilization.
    Honda A; Tachibana R; Hamada K; Morita K; Mizuno N; Morita K; Asano M
    Sci Rep; 2019 Aug; 9(1):11571. PubMed ID: 31399630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroporation-mediated genome editing in vitrified/warmed mouse zygotes created by IVF via ultra-superovulation.
    Nakagawa Y; Sakuma T; Takeo T; Nakagata N; Yamamoto T
    Exp Anim; 2018 Nov; 67(4):535-543. PubMed ID: 30012936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple and Efficient Method for Generating KO Rats Using In Vitro Fertilized Oocytes.
    Morita K; Honda A; Asano M
    Methods Mol Biol; 2023; 2637():233-246. PubMed ID: 36773151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient collection and cryopreservation of embryos in F344 strain inbred rats.
    Taketsuru H; Kaneko T
    Cryobiology; 2013 Oct; 67(2):230-4. PubMed ID: 23928269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Successful production of genome-edited rats by the rGONAD method.
    Kobayashi T; Namba M; Koyano T; Fukushima M; Sato M; Ohtsuka M; Matsuyama M
    BMC Biotechnol; 2018 Apr; 18(1):19. PubMed ID: 29606116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel technique for large-fragment knock-in animal production without ex vivo handling of zygotes.
    Abe M; Nakatsukasa E; Natsume R; Hamada S; Sakimura K; Watabe AM; Ohtsuka T
    Sci Rep; 2023 Feb; 13(1):2245. PubMed ID: 36755180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors.
    Miura H; Quadros RM; Gurumurthy CB; Ohtsuka M
    Nat Protoc; 2018 Jan; 13(1):195-215. PubMed ID: 29266098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproductive technologies for the generation and maintenance of valuable animal strains.
    Kaneko T
    J Reprod Dev; 2018 Jun; 64(3):209-215. PubMed ID: 29657233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal conditions for successful in vitro fertilization and subsequent embryonic development in Sprague-Dawley rats.
    Jiang JY; Tsang BK
    Biol Reprod; 2004 Dec; 71(6):1974-9. PubMed ID: 15317689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of genetic strain and gender on age-related changes in body composition of the laboratory rat.
    Gordon CJ; Jarema K; Johnstone AF; Phillips PM
    J Toxicol Environ Health A; 2016; 79(8):376-92. PubMed ID: 27267702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and efficient production of genome-edited animals by electroporation into oocytes injected with frozen or freeze-dried sperm.
    Nakagawa Y; Kaneko T
    Cryobiology; 2019 Oct; 90():71-74. PubMed ID: 31446002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome editing of rodents by electroporation of CRISPR/Cas9 into frozen-warmed pronuclear-stage embryos.
    Kaneko T; Nakagawa Y
    Cryobiology; 2020 Feb; 92():231-234. PubMed ID: 31987837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Large Fragment Knock-In Mouse Models by Microinjecting into 2-Cell Stage Embryos.
    Gu B; Gertsenstein M; Posfai E
    Methods Mol Biol; 2020; 2066():89-100. PubMed ID: 31512209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison study of superovulation strategies for C57BL/6J and B6D2F1 mice in CRISPR-Cas9 mediated genome editing.
    Zhao X; Huang JX; Zhang H; Gong X; Dong J; Ren HL; Liu Z
    Reprod Fertil Dev; 2021 Nov; 33(14):772-781. PubMed ID: 34748725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice.
    Takeo T; Nakagata N
    PLoS One; 2015; 10(5):e0128330. PubMed ID: 26024317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplified pipelines for genetic engineering of mammalian embryos by CRISPR-Cas9 electroporation†.
    Miao D; Giassetti MI; Ciccarelli M; Lopez-Biladeau B; Oatley JM
    Biol Reprod; 2019 Jul; 101(1):177-187. PubMed ID: 31095680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of superovulation using inhibin antiserum and competence of embryo development in wild large Japanese field mice (Apodemus speciosus).
    Meguro K; Komatsu K; Ohdaira T; Nakagata N; Nakata A; Fukumoto M; Miura T; Yamashiro H
    Reprod Domest Anim; 2019 Dec; 54(12):1637-1642. PubMed ID: 31587388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing.
    Kumita W; Sato K; Suzuki Y; Kurotaki Y; Harada T; Zhou Y; Kishi N; Sato K; Aiba A; Sakakibara Y; Feng G; Okano H; Sasaki E
    Sci Rep; 2019 Sep; 9(1):12719. PubMed ID: 31481684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing of Pig.
    Watanabe M; Nagashima H
    Methods Mol Biol; 2017; 1630():121-139. PubMed ID: 28643255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.