These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31399833)

  • 1. Fermented crop straws by Trichoderma viride and Saccharomyces cerevisiae enhanced the bioconversion rate of Musca domestica (Diptera: Muscidae).
    Qi X; Li Z; Akami M; Mansour A; Niu C
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29388-29396. PubMed ID: 31399833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The single-batch bioconversion of wheat straw to ethanol employing the fungus Trichoderma viride and the yeast Pachysolen tannophylus.
    Zayed G; Meyer O
    Appl Microbiol Biotechnol; 1996 May; 45(4):551-5. PubMed ID: 8737576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White-rot fungal conversion of wheat straw to energy rich cattle feed.
    Shrivastava B; Thakur S; Khasa YP; Gupte A; Puniya AK; Kuhad RC
    Biodegradation; 2011 Jul; 22(4):823-31. PubMed ID: 20734121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquefaction of lignocellulose at high-solids concentrations.
    Jørgensen H; Vibe-Pedersen J; Larsen J; Felby C
    Biotechnol Bioeng; 2007 Apr; 96(5):862-70. PubMed ID: 16865734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Diet and Moisture Content on the Development of Musca domestica (Diptera: Muscidae).
    Kökdener M
    Environ Entomol; 2021 Apr; 50(2):399-404. PubMed ID: 33452523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Larval Population Density and Food Type on the Life Cycle of Musca domestica (Diptera: Muscidae).
    Kökdener M; Kiper F
    Environ Entomol; 2021 Apr; 50(2):324-329. PubMed ID: 33377158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts.
    Zhang Y; Wang C; Wang L; Yang R; Hou P; Liu J
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):453-464. PubMed ID: 28101807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Isolation and identification of a cellulose degrading fungus Y5 and its capability of degradating wheat straw].
    Yin ZW; Fan BQ; Ren P
    Huan Jing Ke Xue; 2011 Jan; 32(1):247-52. PubMed ID: 21404694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biodegradation of Cellulose-Containing Substrates by Micromycetes Followed by Bioconversion into Biogas].
    Prokudina LI; Osmolovskii AA; Egorova MA; Malakhova DV; Netrusov AI; Tsavkelova EA
    Prikl Biokhim Mikrobiol; 2016; 52(2):200-9. PubMed ID: 27266249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation.
    Lever M; Ho G; Cord-Ruwisch R
    Bioresour Technol; 2010 Sep; 101(18):7094-8. PubMed ID: 20430612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation enhancement of rice straw by co-culture of Phanerochaete chrysosporium and Trichoderma viride.
    Chen KJ; Tang JC; Xu BH; Lan SL; Cao Y
    Sci Rep; 2019 Dec; 9(1):19708. PubMed ID: 31873163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of white-rot basidiomycetes on chemical composition and in vitro digestibility of wheat straw.
    Jalc D; Nerud F; Zitnan R; Siroka P
    Folia Microbiol (Praha); 1996; 41(1):73-5. PubMed ID: 9090827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting.
    Singh A; Sharma S
    Bioresour Technol; 2002 Nov; 85(2):107-11. PubMed ID: 12227532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving ruminal digestibility of various wheat straw types by white-rot fungi.
    Nayan N; van Erven G; Kabel MA; Sonnenberg AS; Hendriks WH; Cone JW
    J Sci Food Agric; 2019 Jan; 99(2):957-965. PubMed ID: 30125969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of wheat straw by Pleurotus ostreatus.
    Pandey VK; Singh MP
    Cell Mol Biol (Noisy-le-grand); 2014 Dec; 60(5):29-34. PubMed ID: 25535709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
    Li HY; Li SN; Wang SX; Wang Q; Xue YY; Zhu BC
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1404-10. PubMed ID: 26571658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale production of house fly, Musca domestica (Diptera: Muscidae), larvae fed 3 manure types.
    Miranda CD; Cammack JA; Tomberlin JK
    J Econ Entomol; 2023 Aug; 116(4):1102-1109. PubMed ID: 37279773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.
    Wang J; Wang Q; Xu Z; Zhang W; Xiang J
    J Microbiol Biotechnol; 2015 Jan; 25(1):26-32. PubMed ID: 25152056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride.
    Mutschlechner M; Illmer P; Wagner AO
    Waste Manag; 2015 Sep; 43():98-107. PubMed ID: 26013693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.