BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 31399961)

  • 1. A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy.
    Zeng LF; Xiao Y; Sun L
    Adv Exp Med Biol; 2019; 1165():49-79. PubMed ID: 31399961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy.
    Hu C; Sun L; Xiao L; Han Y; Fu X; Xiong X; Xu X; Liu Y; Yang S; Liu F; Kanwar YS
    Curr Med Chem; 2015; 22(24):2858-70. PubMed ID: 26119175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling.
    Han W; Ma Q; Liu Y; Wu W; Tu Y; Huang L; Long Y; Wang W; Yee H; Wan Z; Tang R; Tang H; Wan Y
    Phytomedicine; 2019 Apr; 57():203-214. PubMed ID: 30785016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Mobility Group Nucleosome-Binding Protein 1 Mediates Renal Fibrosis Correlating with Macrophages Accumulation and Epithelial-to-Mesenchymal Transition in Diabetic Nephropathy Mice Model.
    Yu J; Dong R; Da J; Li J; Yu F; Zha Y
    Kidney Blood Press Res; 2019; 44(3):331-343. PubMed ID: 31203283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-133b and miR-199b knockdown attenuate TGF-β1-induced epithelial to mesenchymal transition and renal fibrosis by targeting SIRT1 in diabetic nephropathy.
    Sun Z; Ma Y; Chen F; Wang S; Chen B; Shi J
    Eur J Pharmacol; 2018 Oct; 837():96-104. PubMed ID: 30125566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice.
    Yang G; Zhao Z; Zhang X; Wu A; Huang Y; Miao Y; Yang M
    Drug Des Devel Ther; 2017; 11():1065-1079. PubMed ID: 28408805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy.
    Tang F; Hao Y; Zhang X; Qin J
    Drug Des Devel Ther; 2017; 11():2813-2826. PubMed ID: 29033543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylshikonin from Zicao ameliorates renal dysfunction and fibrosis in diabetic mice by inhibiting TGF-β1/Smad pathway.
    Li Z; Hong Z; Peng Z; Zhao Y; Shao R
    Hum Cell; 2018 Jul; 31(3):199-209. PubMed ID: 29549584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FSP1-specific SMAD2 knockout in renal tubular, endothelial, and interstitial cells reduces fibrosis and epithelial-to-mesenchymal transition in murine STZ-induced diabetic nephropathy.
    Loeffler I; Liebisch M; Allert S; Kunisch E; Kinne RW; Wolf G
    Cell Tissue Res; 2018 Apr; 372(1):115-133. PubMed ID: 29209813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway.
    Sutariya B; Saraf M
    J Ethnopharmacol; 2017 Feb; 198():432-443. PubMed ID: 28111218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy.
    Wang JY; Gao YB; Zhang N; Zou DW; Wang P; Zhu ZY; Li JY; Zhou SN; Wang SC; Wang YY; Yang JK
    Mol Cell Endocrinol; 2014 Jul; 392(1-2):163-72. PubMed ID: 24887517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Let-7d miRNA prevents TGF-β1-induced EMT and renal fibrogenesis through regulation of HMGA2 expression.
    Wang Y; Le Y; Xue JY; Zheng ZJ; Xue YM
    Biochem Biophys Res Commun; 2016 Oct; 479(4):676-682. PubMed ID: 27693697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in diabetic nephropathy.
    Lu Q; Ji XJ; Zhou YX; Yao XQ; Liu YQ; Zhang F; Yin XX
    Pharmacol Res; 2015 Sep; 99():237-47. PubMed ID: 26151815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review: Endothelial-myofibroblast transition, a new player in diabetic renal fibrosis.
    Li J; Bertram JF
    Nephrology (Carlton); 2010 Aug; 15(5):507-12. PubMed ID: 20649869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc Attenuates Tubulointerstitial Fibrosis in Diabetic Nephropathy Via Inhibition of HIF Through PI-3K Signaling.
    Zhang X; Liang D; Fan J; Lian X; Zhao Y; Wang X; Chi ZH; Zhang P
    Biol Trace Elem Res; 2016 Oct; 173(2):372-83. PubMed ID: 26956696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of EMT in renal fibrosis.
    Carew RM; Wang B; Kantharidis P
    Cell Tissue Res; 2012 Jan; 347(1):103-16. PubMed ID: 21845400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LncRNA-NR_033515 promotes proliferation, fibrogenesis and epithelial-to-mesenchymal transition by targeting miR-743b-5p in diabetic nephropathy.
    Gao J; Wang W; Wang F; Guo C
    Biomed Pharmacother; 2018 Oct; 106():543-552. PubMed ID: 29990842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage Phenotype and Fibrosis in Diabetic Nephropathy.
    Calle P; Hotter G
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MiR-455-3p suppresses renal fibrosis through repression of ROCK2 expression in diabetic nephropathy.
    Wu J; Liu J; Ding Y; Zhu M; Lu K; Zhou J; Xie X; Xu Y; Shen X; Chen Y; Shao X; Zhu C
    Biochem Biophys Res Commun; 2018 Sep; 503(2):977-983. PubMed ID: 29932921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective Effects of Berberine on Renal Injury in Streptozotocin (STZ)-Induced Diabetic Mice.
    Zhang X; He H; Liang D; Jiang Y; Liang W; Chi ZH; Ma J
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27529235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.