BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 31399961)

  • 21. A glimpse of the pathogenetic mechanisms of Wnt/β-catenin signaling in diabetic nephropathy.
    Xiao L; Wang M; Yang S; Liu F; Sun L
    Biomed Res Int; 2013; 2013():987064. PubMed ID: 24455745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Up-regulation of microRNA-93 inhibits TGF-β1-induced EMT and renal fibrogenesis by down-regulation of Orai1.
    Ma J; Zhang L; Hao J; Li N; Tang J; Hao L
    J Pharmacol Sci; 2018 Apr; 136(4):218-227. PubMed ID: 29551286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TGF-β: the connecting link between nephropathy and fibrosis.
    Sutariya B; Jhonsa D; Saraf MN
    Immunopharmacol Immunotoxicol; 2016; 38(1):39-49. PubMed ID: 26849902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid.
    Mao ZM; Shen SM; Wan YG; Sun W; Chen HL; Huang MM; Yang JJ; Wu W; Tang HT; Tang RM
    J Ethnopharmacol; 2015 Sep; 173():256-65. PubMed ID: 26226437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excessive Activation of Notch Signaling in Macrophages Promote Kidney Inflammation, Fibrosis, and Necroptosis.
    Ma T; Li X; Zhu Y; Yu S; Liu T; Zhang X; Chen D; Du S; Chen T; Chen S; Xu Y; Fan Q
    Front Immunol; 2022; 13():835879. PubMed ID: 35280997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene therapy, a targeted treatment for diabetic nephropathy.
    Lin X; Tao L; Tang D
    Curr Med Chem; 2013; 20(30):3774-84. PubMed ID: 23895680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-genetic mechanisms of diabetic nephropathy.
    Han Q; Zhu H; Chen X; Liu Z
    Front Med; 2017 Sep; 11(3):319-332. PubMed ID: 28871454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epithelial-to-Mesenchymal Transition in Diabetic Nephropathy: Fact or Fiction?
    Loeffler I; Wolf G
    Cells; 2015 Oct; 4(4):631-52. PubMed ID: 26473930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signaling pathways in diabetic nephropathy.
    Kawanami D; Matoba K; Utsunomiya K
    Histol Histopathol; 2016 Oct; 31(10):1059-67. PubMed ID: 27094540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The regulatory role of miRNA and lncRNA on autophagy in diabetic nephropathy.
    Yu S; Li Y; Lu X; Han Z; Li C; Yuan X; Guo D
    Cell Signal; 2024 Jun; 118():111144. PubMed ID: 38493883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sitagliptin ameliorates diabetic nephropathy by blocking TGF-β1/Smad signaling pathway.
    Wang D; Zhang G; Chen X; Wei T; Liu C; Chen C; Gong Y; Wei Q
    Int J Mol Med; 2018 May; 41(5):2784-2792. PubMed ID: 29484381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNA-21: A Critical Pathogenic Factor of Diabetic Nephropathy.
    Liu S; Wu W; Liao J; Tang F; Gao G; Peng J; Fu X; Zhan Y; Chen Z; Xu W; Zhao S
    Front Endocrinol (Lausanne); 2022; 13():895010. PubMed ID: 35865316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA circuits in transforming growth factor-β actions and diabetic nephropathy.
    Kato M; Natarajan R
    Semin Nephrol; 2012 May; 32(3):253-60. PubMed ID: 22835456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy.
    Conserva F; Barozzino M; Pesce F; Divella C; Oranger A; Papale M; Sallustio F; Simone S; Laviola L; Giorgino F; Gallone A; Pontrelli P; Gesualdo L
    Sci Rep; 2019 Aug; 9(1):11357. PubMed ID: 31388051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revisiting Experimental Models of Diabetic Nephropathy.
    Giralt-López A; Molina-Van den Bosch M; Vergara A; García-Carro C; Seron D; Jacobs-Cachá C; Soler MJ
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32438732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collagen VIII influences epithelial phenotypic changes in experimental diabetic nephropathy.
    Loeffler I; Liebisch M; Wolf G
    Am J Physiol Renal Physiol; 2012 Sep; 303(5):F733-45. PubMed ID: 22759394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition.
    Kang MK; Park SH; Choi YJ; Shin D; Kang YH
    J Mol Med (Berl); 2015 Jul; 93(7):759-72. PubMed ID: 26062793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of microRNA-192 in diabetic nephropathy: the clinical applications and mechanisms of action.
    Wan X; Liao J; Lai H; Zhang S; Cui J; Chen C
    Front Endocrinol (Lausanne); 2023; 14():1179161. PubMed ID: 37396169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective.
    Xue R; Gui D; Zheng L; Zhai R; Wang F; Wang N
    J Diabetes Res; 2017; 2017():1839809. PubMed ID: 28386567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dietary low-fat soy milk powder retards diabetic nephropathy progression via inhibition of renal fibrosis and renal inflammation.
    Jheng HF; Hirotsuka M; Goto T; Shibata M; Matsumura Y; Kawada T
    Mol Nutr Food Res; 2017 Mar; 61(3):. PubMed ID: 27748993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.