These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 31399961)

  • 41. Transforming growth factor-β/Smad signalling in diabetic nephropathy.
    Lan HY
    Clin Exp Pharmacol Physiol; 2012 Aug; 39(8):731-8. PubMed ID: 22211842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Research Progress on Mechanism of Podocyte Depletion in Diabetic Nephropathy.
    Dai H; Liu Q; Liu B
    J Diabetes Res; 2017; 2017():2615286. PubMed ID: 28791309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The pathological role of the ubiquitination pathway in diabetic nephropathy.
    Pontrelli P; Oranger A; Barozzino M; Conserva F; Papale M; Gesualdo L
    Minerva Med; 2018 Feb; 109(1):53-67. PubMed ID: 28974087
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Attenuation of diabetic nephropathy by Sanziguben Granule inhibiting EMT through Nrf2-mediated anti-oxidative effects in streptozotocin (STZ)-induced diabetic rats.
    Zhang C; Li Q; Lai S; Yang L; Shi G; Wang Q; Luo Z; Zhao R; Yu Y
    J Ethnopharmacol; 2017 Jun; 205():207-216. PubMed ID: 28501426
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Roux-en-Y Esophagojejunostomy Ameliorates Renal Function Through Reduction of Renal Inflammatory and Fibrotic Markers in Diabetic Nephropathy.
    Wang C; He B; Piao D; Han P
    Obes Surg; 2016 Jul; 26(7):1402-13. PubMed ID: 26510754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lessons learned from studies of the natural history of diabetic nephropathy in young type 1 diabetic patients.
    Steinke JM; Mauer M;
    Pediatr Endocrinol Rev; 2008 Aug; 5 Suppl 4():958-63. PubMed ID: 18806710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways.
    Malik S; Suchal K; Khan SI; Bhatia J; Kishore K; Dinda AK; Arya DS
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F414-F422. PubMed ID: 28566504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy.
    Wang J; Duan L; Guo T; Gao Y; Tian L; Liu J; Wang S; Yang J
    J Diabetes Complications; 2016 Apr; 30(3):406-14. PubMed ID: 26775556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis.
    Li YK; Ma DX; Wang ZM; Hu XF; Li SL; Tian HZ; Wang MJ; Shu YW; Yang J
    Pharmacol Res; 2018 May; 131():102-111. PubMed ID: 29530599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Promising therapeutic mechanism for Chinese herbal medicine in ameliorating renal fibrosis in diabetic nephropathy.
    Wang S; Qin S; Cai B; Zhan J; Chen Q
    Front Endocrinol (Lausanne); 2023; 14():932649. PubMed ID: 37522131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Role of Cell Division Autoantigen 1 (CDA1) in Renal Fibrosis of Diabetic Nephropathy.
    Chen L; Wu J; Hu B; Liu C; Wang H
    Biomed Res Int; 2021; 2021():6651075. PubMed ID: 33997036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ethanolic Ginkgo biloba leaf extract prevents renal fibrosis through Akt/mTOR signaling in diabetic nephropathy.
    Lu Q; Zuo WZ; Ji XJ; Zhou YX; Liu YQ; Yao XQ; Zhou XY; Liu YW; Zhang F; Yin XX
    Phytomedicine; 2015 Nov; 22(12):1071-8. PubMed ID: 26547529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT.
    Srivastava SP; Koya D; Kanasaki K
    Biomed Res Int; 2013; 2013():125469. PubMed ID: 24089659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dencichine ameliorates kidney injury in induced type II diabetic nephropathy via the TGF-β/Smad signalling pathway.
    Jie L; Pengcheng Q; Qiaoyan H; Linlin B; Meng Z; Fang W; Min J; Li Y; Ya Z; Qian Y; Siwang W
    Eur J Pharmacol; 2017 Oct; 812():196-205. PubMed ID: 28633927
    [TBL] [Abstract][Full Text] [Related]  

  • 55. β-N-Oxalyl-L-α,β-diaminopropionic acid from Panax notoginseng plays a major role in the treatment of type 2 diabetic nephropathy.
    Li J; Qiu P; Wang S; Wu J; He Q; Li K; Xu L
    Biomed Pharmacother; 2019 Jun; 114():108801. PubMed ID: 30928803
    [TBL] [Abstract][Full Text] [Related]  

  • 56. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7.
    McClelland AD; Herman-Edelstein M; Komers R; Jha JC; Winbanks CE; Hagiwara S; Gregorevic P; Kantharidis P; Cooper ME
    Clin Sci (Lond); 2015 Dec; 129(12):1237-49. PubMed ID: 26415649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Therapeutic Effects of Tangshen Formula on Diabetic Nephropathy in Rats.
    Zhao T; Sun S; Zhang H; Huang X; Yan M; Dong X; Wen Y; Wang H; Lan HY; Li P
    PLoS One; 2016; 11(1):e0147693. PubMed ID: 26807792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MicroRNAs in diabetic nephropathy: From molecular mechanisms to new therapeutic targets of treatment.
    Yarahmadi A; Shahrokhi SZ; Mostafavi-Pour Z; Azarpira N
    Biochem Pharmacol; 2021 Jul; 189():114301. PubMed ID: 33203517
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Multi-Therapeutic Role of MSCs in Diabetic Nephropathy.
    Wang Y; Shan SK; Guo B; Li F; Zheng MH; Lei LM; Xu QS; Ullah MHE; Xu F; Lin X; Yuan LQ
    Front Endocrinol (Lausanne); 2021; 12():671566. PubMed ID: 34163437
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lysosomal dysfunction induced by changes in albumin's tertiary structure: Potential key factor in protein toxicity during diabetic nephropathy.
    Medina-Navarro R; Torres-Ramos YD; Guzmán-Grenfell AM; Díaz-Flores M; León-Reyes G; Hicks G JJ
    Life Sci; 2019 Aug; 230():197-207. PubMed ID: 31150688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.