These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31400477)
1. More data on in vitro assessment of comparative and combined toxicity of metal oxide nanoparticles. Bushueva T; Minigalieva I; Panov V; Kuznetsova A; Naumova A; Shur V; Shishkina E; Gurviсh V; Privalova L; Katsnelson B Food Chem Toxicol; 2019 Nov; 133():110753. PubMed ID: 31400477 [TBL] [Abstract][Full Text] [Related]
2. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Minigalieva IA; Katsnelson BA; Panov VG; Privalova LI; Varaksin AN; Gurvich VB; Sutunkova MP; Shur VY; Shishkina EV; Valamina IE; Zubarev IV; Makeyev OH; Meshtcheryakova EY; Klinova SV Toxicology; 2017 Apr; 380():72-93. PubMed ID: 28212817 [TBL] [Abstract][Full Text] [Related]
3. Are in vivo and in vitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn Minigalieva I; Bushueva T; Fröhlich E; Meindl C; Öhlinger K; Panov V; Varaksin A; Shur V; Shishkina E; Gurviсh V; Katsnelson B Food Chem Toxicol; 2017 Nov; 109(Pt 1):393-404. PubMed ID: 28935498 [TBL] [Abstract][Full Text] [Related]
4. Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells. Katsumiti A; Thorley AJ; Arostegui I; Reip P; Valsami-Jones E; Tetley TD; Cajaraville MP Toxicol In Vitro; 2018 Apr; 48():146-158. PubMed ID: 29408664 [TBL] [Abstract][Full Text] [Related]
5. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Baek YW; An YJ Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463 [TBL] [Abstract][Full Text] [Related]
7. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. Líbalová H; Costa PM; Olsson M; Farcal L; Ortelli S; Blosi M; Topinka J; Costa AL; Fadeel B Chemosphere; 2018 Apr; 196():482-493. PubMed ID: 29324388 [TBL] [Abstract][Full Text] [Related]
8. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Bulcke F; Thiel K; Dringen R Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294 [TBL] [Abstract][Full Text] [Related]
9. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Rotini A; Gallo A; Parlapiano I; Berducci MT; Boni R; Tosti E; Prato E; Maggi C; Cicero AM; Migliore L; Manfra L Ecotoxicol Environ Saf; 2018 Jan; 147():852-860. PubMed ID: 28968938 [TBL] [Abstract][Full Text] [Related]
10. A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. Dankers ACA; Kuper CF; Boumeester AJ; Fabriek BO; Kooter IM; Gröllers-Mulderij M; Tromp P; Nelissen I; Zondervan-Van Den Beuken EK; Vandebriel RJ J Appl Toxicol; 2018 Feb; 38(2):160-171. PubMed ID: 28960351 [TBL] [Abstract][Full Text] [Related]
11. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Akhtar MJ; Kumar S; Alhadlaq HA; Alrokayan SA; Abu-Salah KM; Ahamed M Toxicol Ind Health; 2016 May; 32(5):809-21. PubMed ID: 24311626 [TBL] [Abstract][Full Text] [Related]
12. In vitro evaluation of copper oxide nanoparticle-induced cytotoxicity and oxidative stress using human embryonic kidney cells. Reddy ARN; Lonkala S Toxicol Ind Health; 2019 Feb; 35(2):159-164. PubMed ID: 30803393 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress. Gallo A; Manfra L; Boni R; Rotini A; Migliore L; Tosti E Environ Int; 2018 Sep; 118():325-333. PubMed ID: 29960187 [TBL] [Abstract][Full Text] [Related]
14. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Sun J; Wang S; Zhao D; Hun FH; Weng L; Liu H Cell Biol Toxicol; 2011 Oct; 27(5):333-42. PubMed ID: 21681618 [TBL] [Abstract][Full Text] [Related]
15. Cellular alterations in midgut cells of honey bee workers (Apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Dabour K; Al Naggar Y; Masry S; Naiem E; Giesy JP Sci Total Environ; 2019 Feb; 651(Pt 1):1356-1367. PubMed ID: 30360267 [TBL] [Abstract][Full Text] [Related]
16. Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Perreault F; Pedroso Melegari S; Henning da Costa C; de Oliveira Franco Rossetto AL; Popovic R; Gerson Matias W Sci Total Environ; 2012 Dec; 441():117-24. PubMed ID: 23137976 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the lung toxicity of copper oxide nanoparticles: current status. Ahamed M; Akhtar MJ; Alhadlaq HA; Alrokayan SA Nanomedicine (Lond); 2015; 10(15):2365-77. PubMed ID: 26251192 [TBL] [Abstract][Full Text] [Related]
18. Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Cho WS; Duffin R; Bradley M; Megson IL; MacNee W; Lee JK; Jeong J; Donaldson K Part Fibre Toxicol; 2013 Oct; 10(1):55. PubMed ID: 24156363 [TBL] [Abstract][Full Text] [Related]
19. In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Sadiq R; Khan QM; Mobeen A; Hashmat AJ Drug Chem Toxicol; 2015 Apr; 38(2):152-61. PubMed ID: 24896217 [TBL] [Abstract][Full Text] [Related]
20. Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of Raphanus sativus seeds. Singh D; Kumar A Environ Monit Assess; 2019 Oct; 191(11):703. PubMed ID: 31673860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]