BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31400541)

  • 1. Modelling the seasonal changes in the gas exchange response to CO
    Greer DH
    Plant Physiol Biochem; 2019 Sep; 142():372-383. PubMed ID: 31400541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate.
    Greer DH; Weedon MM
    Plant Cell Environ; 2012 Jun; 35(6):1050-64. PubMed ID: 22150771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling seasonal changes in the temperature-dependency of CO
    Greer DH
    Funct Plant Biol; 2018 Feb; 45(3):315-327. PubMed ID: 32290955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in photosynthesis and chlorophyll
    Greer DH
    Funct Plant Biol; 2022 Jan; 49(2):170-185. PubMed ID: 34883042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal changes in the photosynthetic response to CO
    Greer DH
    Funct Plant Biol; 2015 Mar; 42(3):309-324. PubMed ID: 32480676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum.
    Onoda Y; Hikosaka K; Hirose T
    J Exp Bot; 2005 Feb; 56(412):755-63. PubMed ID: 15596479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf temperature and CO
    Greer DH
    Funct Plant Biol; 2022 Jun; 49(7):659-671. PubMed ID: 35339204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and CO
    Greer DH
    Plant Physiol Biochem; 2017 Feb; 111():295-303. PubMed ID: 27987474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraspecific differences in the photosynthetic responses to chloroplast CO
    Greer DH
    Plant Direct; 2024 Jun; 8(6):e595. PubMed ID: 38855127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.
    Rogiers SY; Clarke SJ
    Ann Bot; 2013 Mar; 111(3):433-44. PubMed ID: 23293018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic and Physiological Responses of Shiraz and Cabernet Sauvignon (Vitis vinifera L.) to Near Optimal Temperatures of 25 and 35 °C.
    Hochberg U; Batushansky A; Degu A; Rachmilevitch S; Fait A
    Int J Mol Sci; 2015 Oct; 16(10):24276-94. PubMed ID: 26473851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal changes in the temperature response of photosynthesis in canopy leaves of Quercus crispula in a cool-temperate forest.
    Hikosaka K; Nabeshima E; Hiura T
    Tree Physiol; 2007 Jul; 27(7):1035-41. PubMed ID: 17403657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.
    Salazar-Parra C; Aranjuelo I; Pascual I; Erice G; Sanz-Sáez Á; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F
    J Plant Physiol; 2015 Feb; 174():97-109. PubMed ID: 25462972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard.
    Greer DH; Weedon MM
    Plant Physiol Biochem; 2012 May; 54():59-69. PubMed ID: 22381656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal changes in temperature response of photosynthesis and its contribution to annual carbon gain in Daphniphyllum humile, an evergreen understorey shrub.
    Katahata SI; Han Q; Naramoto M; Kakubari Y; Mukai Y
    Plant Biol (Stuttg); 2014 Mar; 16(2):345-53. PubMed ID: 23731172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?
    Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F
    Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates.
    Martínez-Lüscher J; Morales F; Sánchez-Díaz M; Delrot S; Aguirreolea J; Gomès E; Pascual I
    Plant Sci; 2015 Jul; 236():168-76. PubMed ID: 26025530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell wall components regulate photosynthesis and leaf water relations of Vitis vinifera cv. Grenache acclimated to contrasting environmental conditions.
    Roig-Oliver M; Nadal M; Clemente-Moreno MJ; Bota J; Flexas J
    J Plant Physiol; 2020 Jan; 244():153084. PubMed ID: 31812907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How well do growing season dynamics of photosynthetic capacity correlate with leaf biochemistry and climate fluctuations?
    Way DA; Stinziano JR; Berghoff H; Oren R
    Tree Physiol; 2017 Jul; 37(7):879-888. PubMed ID: 28898994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term temperature dependency of the photosynthetic and PSII photochemical responses to photon flux density of leaves of Vitis vinifera cv. Shiraz vines grown in field conditions with and without fruit.
    Greer DH
    Funct Plant Biol; 2019 Jun; 46(7):634-648. PubMed ID: 30967170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.