BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31400562)

  • 41. Manganese(III) corrole-oxidant adduct as the active intermediate in catalytic hydrogen atom transfer.
    Zdilla MJ; Abu-Omar MM
    Inorg Chem; 2008 Nov; 47(22):10718-22. PubMed ID: 18855381
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electron paramagnetic resonance and spectrophotometric studies of the peroxide compounds of manganese-substituted horseradish peroxidase, cytochrome-c peroxidase and manganese-porphyrin model complexes.
    Hori H; Ikeda-Saito M; Yonetani T
    Biochim Biophys Acta; 1987 Mar; 912(1):74-81. PubMed ID: 3030431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe
    Zhou T; Zou X; Wu X; Mao J; Wang J
    Ultrason Sonochem; 2017 Jul; 37():320-327. PubMed ID: 28427639
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polystyrene-bound Mn(T4PyP): a highly efficient and reusable catalyst for biomimetic oxidative decarboxylation of carboxylic acids with sodium periodate.
    Moghadam M; Tangestaninejad S; Mirkhani V; Mohammadpoor-Baltork I; Sirjanian N; Parand S
    Bioorg Med Chem; 2009 May; 17(9):3394-8. PubMed ID: 19359183
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mn(III)-Iodosylarene Porphyrins as an Active Oxidant in Oxidation Reactions: Synthesis, Characterization, and Reactivity Studies.
    Guo M; Lee YM; Seo MS; Kwon YJ; Li XX; Ohta T; Kim WS; Sarangi R; Fukuzumi S; Nam W
    Inorg Chem; 2018 Aug; 57(16):10232-10240. PubMed ID: 30080409
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of chlorination behaviors between norfloxacin and ofloxacin: Reaction kinetics, oxidation products and reaction pathways.
    Wang X; Li Y; Li R; Yang H; Zhou B; Wang X; Xie Y
    Chemosphere; 2019 Jan; 215():124-132. PubMed ID: 30316154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New PEG-ylated Mn(III) porphyrins approaching catalytic activity of SOD enzyme.
    Batinić-Haberle I; Spasojević I; Stevens RD; Bondurant B; Okado-Matsumoto A; Fridovich I; Vujasković Z; Dewhirst MW
    Dalton Trans; 2006 Jan; (4):617-24. PubMed ID: 16402149
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water.
    Kamagate M; Assadi AA; Kone T; Giraudet S; Coulibaly L; Hanna K
    Chemosphere; 2018 Mar; 195():847-853. PubMed ID: 29289913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iron Porphyrin as a Cytochrome P450 Model for the Degradation of Dye.
    Ren DD; Lu X; Zhou LP; Tian H; Wang S; Ma LF; Li DS
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432049
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystallographic identification of a series of manganese porphyrin complexes with nitrogenous bases.
    Lahanas N; Kucheryavy P; Lalancette RA; Lockard JV
    Acta Crystallogr C Struct Chem; 2019 Mar; 75(Pt 3):304-312. PubMed ID: 30833525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation: Mechanism and application to norfloxacin degradation.
    Li H; Chen J; Hou H; Pan H; Ma X; Yang J; Wang L; Crittenden JC
    Water Res; 2017 Dec; 126():274-284. PubMed ID: 28963935
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dissection of the mechanism of manganese porphyrin-catalyzed chlorine dioxide generation.
    Umile TP; Wang D; Groves JT
    Inorg Chem; 2011 Oct; 50(20):10353-62. PubMed ID: 21936530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metalloporphyrins as biomimetic models for cytochrome p-450 in the oxidation of atrazine.
    Gotardo MC; Moraes LA; Assis MD
    J Agric Food Chem; 2006 Dec; 54(26):10011-8. PubMed ID: 17177535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of Fe
    Xian Z; Liang S; Jin X; Tian H; Ling J; Wang C
    J Environ Sci (China); 2021 Jan; 99():110-118. PubMed ID: 33183688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct evidence for an iron(IV)-oxo porphyrin pi-cation radical as an active oxidant in catalytic oxygenation reactions.
    Han AR; Jin Jeong Y; Kang Y; Lee JY; Sook Seo M; Nam W
    Chem Commun (Camb); 2008 Mar; (9):1076-8. PubMed ID: 18292895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthetic routes to meso-patterned porphyrins.
    Lindsey JS
    Acc Chem Res; 2010 Feb; 43(2):300-11. PubMed ID: 19863076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrochemistry and spectroelectrochemistry of bismanganese porphyrin-corrole dyads.
    Chen P; El Ojaimi M; Gros CP; Richard P; Barbe JM; Guilard R; Shen J; Kadish KM
    Inorg Chem; 2011 Apr; 50(8):3479-89. PubMed ID: 21405090
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibitory effects of water-soluble cationic manganese porphyrins on peroxynitrite-induced SOS response in Salmonella typhimurium TA4107/pSK1002.
    Motohashi N; Takahashi A; Mifune M; Saito Y
    Mutat Res; 2004 Oct; 554(1-2):165-74. PubMed ID: 15450415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potassium monopersulfate oxidation of 2,4,6-tribromophenol catalyzed by a SiO2-supported iron(III)-5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin.
    Zhu Q; Mizutani Y; Maeno S; Nishimoto R; Miyamoto T; Fukushima M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1593-601. PubMed ID: 23947696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.
    Rebelo SL; Silva AM; Medforth CJ; Freire C
    Molecules; 2016 Apr; 21(4):481. PubMed ID: 27077840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.