These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31400562)

  • 61. Modeling the Kinetics of Contaminants Oxidation and the Generation of Manganese(III) in the Permanganate/Bisulfite Process.
    Sun B; Dong H; He D; Rao D; Guan X
    Environ Sci Technol; 2016 Feb; 50(3):1473-82. PubMed ID: 26709670
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Binuclear manganese compounds of potential biological significance. Part 2. Mechanistic study of hydrogen peroxide disproportionation by dimanganese complexes: the two oxygen atoms of the peroxide end up in a dioxo intermediate.
    Dubois L; Caspar R; Jacquamet L; Petit PE; Charlot MF; Baffert C; Collomb MN; Deronzier A; Latour JM
    Inorg Chem; 2003 Aug; 42(16):4817-27. PubMed ID: 12895103
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Efficient olefin epoxidation by robust Re4 cluster-supported Mn(III) complexes with peracids: evidence of simultaneous operation of multiple active oxidant species, Mn(V)=O, Mn(IV)=O, and Mn(III)-OOC(O)R.
    Lee SH; Xu L; Park BK; Mironov YV; Kim SH; Song YJ; Kim C; Kim Y; Kim SJ
    Chemistry; 2010 Apr; 16(15):4678-85. PubMed ID: 20235245
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Manganese Catalyzed C-H Halogenation.
    Liu W; Groves JT
    Acc Chem Res; 2015 Jun; 48(6):1727-35. PubMed ID: 26042637
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization.
    Deka B; Bhattacharyya KG
    J Environ Manage; 2015 Mar; 150():479-488. PubMed ID: 25560663
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Oxidation kinetics of anilines by aqueous permanganate and effects of manganese products: Comparison to phenols.
    Pang SY; Duan JB; Zhou Y; Gao Y; Jiang J
    Chemosphere; 2019 Nov; 235():104-112. PubMed ID: 31255750
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
    Rice DB; Massie AA; Jackson TA
    Acc Chem Res; 2017 Nov; 50(11):2706-2717. PubMed ID: 29064667
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Manganese porphyrins catalyze selective C-H bond halogenations.
    Liu W; Groves JT
    J Am Chem Soc; 2010 Sep; 132(37):12847-9. PubMed ID: 20806921
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review.
    Huang J; Zhang H
    Environ Int; 2019 Dec; 133(Pt A):105141. PubMed ID: 31520961
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Water increases rates of epoxidation by Mn(III)porphyrins/imidazole/IO4(-) in CH2Cl2. Analogy with peroxidase and chlorite dismutase.
    Mahmoudi L; Mohajer D; Kissner R; Koppenol WH
    Dalton Trans; 2011 Sep; 40(34):8695-700. PubMed ID: 21804999
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Peroxynitrite flux-mediated LDL oxidation is inhibited by manganese porphyrins in the presence of uric acid.
    Trostchansky A; Ferrer-Sueta G; Batthyány C; Botti H; Batinić-Haberle I; Radi R; Rubbo H
    Free Radic Biol Med; 2003 Nov; 35(10):1293-300. PubMed ID: 14607528
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation.
    Najafpour MM; Pashaei B; Nayeri S
    Dalton Trans; 2012 Apr; 41(16):4799-805. PubMed ID: 22382465
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanistic studies on peroxide activation by a water-soluble iron(III)-porphyrin: implications for O-O bond activation in aqueous and nonaqueous solvents.
    Wolak M; van Eldik R
    Chemistry; 2007; 13(17):4873-83. PubMed ID: 17366654
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Challenges encountered during development of Mn porphyrin-based, potent redox-active drug and superoxide dismutase mimic, MnTnBuOE-2-PyP
    Rajic Z; Tovmasyan A; de Santana OL; Peixoto IN; Spasojevic I; do Monte SA; Ventura E; Rebouças JS; Batinic-Haberle I
    J Inorg Biochem; 2017 Apr; 169():50-60. PubMed ID: 28131001
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles.
    Jung J; Liu S; Ohkubo K; Abu-Omar MM; Fukuzumi S
    Inorg Chem; 2015 May; 54(9):4285-91. PubMed ID: 25867007
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A biomimetic ferric hydroperoxo porphyrin intermediate.
    de Visser SP; Valentine JS; Nam W
    Angew Chem Int Ed Engl; 2010 Mar; 49(12):2099-101. PubMed ID: 20140930
    [No Abstract]   [Full Text] [Related]  

  • 77. Manganese Porphyrin Heterodimers and -trimers in Aqueous Solution.
    Ruhlmann L; Nakamura A; Vos JG; Fuhrhop JH
    Inorg Chem; 1998 Nov; 37(23):6052-6059. PubMed ID: 11670742
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interaction of cationic nickel and manganese porphyrins with the minor groove of DNA.
    Romera C; Sabater L; Garofalo A; M Dixon I; Pratviel G
    Inorg Chem; 2010 Sep; 49(18):8558-67. PubMed ID: 20715812
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: Mechanism and degradation pathways.
    Zhang Q; Zhang H; Zhang Q; Huang Q
    Chemosphere; 2018 Nov; 210():433-439. PubMed ID: 30025360
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Peroxidase-like catalytic activity of aqueous- and immobilized-Mn(3+)-octabromo-porphyrins on ion-exchange resin supplied as mimetic of horseradish peroxidase.
    Kitamura Y; Mori K; Yamamoto M; Nozaki A; Saito M; Tsukamoto I; Mifune M; Saito Y
    Chem Pharm Bull (Tokyo); 2008 Sep; 56(9):1364-6. PubMed ID: 18758123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.