These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 31400595)
1. Different ferric dosing strategies could result in different control mechanisms of sulfide and methane production in sediments of gravity sewers. Cao J; Zhang L; Hong J; Sun J; Jiang F Water Res; 2019 Nov; 164():114914. PubMed ID: 31400595 [TBL] [Abstract][Full Text] [Related]
2. Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms. Yan X; Sun J; Kenjiahan A; Dai X; Ni BJ; Yuan Z Water Res; 2020 Feb; 169():115208. PubMed ID: 31670088 [TBL] [Abstract][Full Text] [Related]
3. Time-based succession existed in rural sewer biofilms: Bacterial communities, sulfate-reducing bacteria and methanogenic archaea, and sulfide and methane generation. Zheng T; Li W; Ma Y; Liu J Sci Total Environ; 2021 Apr; 765():144397. PubMed ID: 33385817 [TBL] [Abstract][Full Text] [Related]
4. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment. Liu Y; Sharma KR; Ni BJ; Fan L; Murthy S; Tyson GQ; Yuan Z Water Res; 2015 May; 74():155-65. PubMed ID: 25727155 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous control of sulfide and methane in sewers achieved by a physical approach targeting dominant active zone in sediments. Ren D; Zuo Z; Xing Y; Ji P; Yu T; Zhu D; Liu Y; Huang X Water Res; 2022 Mar; 211():118010. PubMed ID: 35021123 [TBL] [Abstract][Full Text] [Related]
6. Sulfide and methane production in sewer sediments: Field survey and model evaluation. Liu Y; Tugtas AE; Sharma KR; Ni BJ; Yuan Z Water Res; 2016 Feb; 89():142-50. PubMed ID: 26650449 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Zhang L; Keller J; Yuan Z Water Res; 2009 Sep; 43(17):4123-32. PubMed ID: 19576610 [TBL] [Abstract][Full Text] [Related]
8. Reducing sulfide and methane production in gravity sewer sediments through urine separation, collection and intermittent dosing. Zuo Z; Xing Y; Duan H; Ren D; Zheng M; Liu Y; Huang X Water Res; 2023 May; 234():119820. PubMed ID: 36889087 [TBL] [Abstract][Full Text] [Related]
9. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers. Zuo Z; Ren D; Qiao L; Li H; Huang X; Liu Y Water Res; 2021 Sep; 203():117494. PubMed ID: 34412021 [TBL] [Abstract][Full Text] [Related]
10. Symbiosis of sulfate-reducing bacteria and methanogenic archaea in sewer systems. Shi X; Gao G; Tian J; Wang XC; Jin X; Jin P Environ Int; 2020 Oct; 143():105923. PubMed ID: 32634668 [TBL] [Abstract][Full Text] [Related]
11. A conceptual method to simultaneously inhibit methane and hydrogen sulfide production in sewers: The carbon metabolic pathway and microbial community shift. Ai T; He Q; Xu J; Yin F; Li H; Ai H J Environ Manage; 2019 Sep; 246():119-127. PubMed ID: 31176177 [TBL] [Abstract][Full Text] [Related]
12. Sulfide and methane production in sewer sediments. Liu Y; Ni BJ; Ganigué R; Werner U; Sharma KR; Yuan Z Water Res; 2015 Mar; 70():350-9. PubMed ID: 25543244 [TBL] [Abstract][Full Text] [Related]
13. Upstream Natural Pulsed Ventilation: A simple measure to control the sulfide and methane production in gravity sewer. Gao R; Zhang Z; Zhang T; Liu J; Lu J Sci Total Environ; 2020 Nov; 742():140579. PubMed ID: 32629266 [TBL] [Abstract][Full Text] [Related]
14. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. Jiang G; Gutierrez O; Sharma KR; Yuan Z Water Res; 2010 Jul; 44(14):4241-51. PubMed ID: 20554309 [TBL] [Abstract][Full Text] [Related]
15. Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers. Zhang Z; Chang N; Wang S; Lu J; Li K; Zheng C Sci Total Environ; 2022 Feb; 808():152203. PubMed ID: 34890666 [TBL] [Abstract][Full Text] [Related]
16. Control sulfide and methane production in sewers based on free ammonia inactivation. Zuo Z; Song Y; Ren D; Li H; Gao Y; Yuan Z; Huang X; Zheng M; Liu Y Environ Int; 2020 Oct; 143():105928. PubMed ID: 32673907 [TBL] [Abstract][Full Text] [Related]
17. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Gutierrez O; Sudarjanto G; Ren G; Ganigué R; Jiang G; Yuan Z Water Res; 2014 Jan; 48():569-78. PubMed ID: 24210545 [TBL] [Abstract][Full Text] [Related]
18. Impact of reduced water consumption on sulfide and methane production in rising main sewers. Sun J; Hu S; Sharma KR; Bustamante H; Yuan Z J Environ Manage; 2015 May; 154():307-15. PubMed ID: 25748598 [TBL] [Abstract][Full Text] [Related]
19. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Gutierrez O; Park D; Sharma KR; Yuan Z Water Res; 2009 May; 43(9):2549-57. PubMed ID: 19345393 [TBL] [Abstract][Full Text] [Related]
20. Stratified microbial structure and activity in sulfide- and methane-producing anaerobic sewer biofilms. Sun J; Hu S; Sharma KR; Ni BJ; Yuan Z Appl Environ Microbiol; 2014 Nov; 80(22):7042-52. PubMed ID: 25192994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]