BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31400605)

  • 1. Improving Editing Efficiency for the Sequences with NGH PAM Using xCas9-Derived Base Editors.
    Liu X; Li G; Zhou X; Qiao Y; Wang R; Tang S; Liu J; Wang L; Huang X
    Mol Ther Nucleic Acids; 2019 Sep; 17():626-635. PubMed ID: 31400605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes.
    Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L
    CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding PAM recognition and enhancing base editing activity of Cas9 variants with non-PI domain mutations derived from xCas9.
    Xie L; Hu Y; Li L; Jiang L; Jiao Y; Wang Y; Zhou L; Tao R; Qu J; Chen Q; Yao S
    FEBS J; 2022 Oct; 289(19):5899-5913. PubMed ID: 35411720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the range of CRISPR/Cas9-directed genome editing in soybean.
    He R; Zhang P; Yan Y; Yu C; Jiang L; Zhu Y; Wang D
    aBIOTECH; 2022 Jun; 3(2):89-98. PubMed ID: 36312444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome Engineering in Plant Using an Efficient CRISPR-xCas9 Toolset With an Expanded PAM Compatibility.
    Zhang C; Kang G; Liu X; Zhao S; Yuan S; Li L; Yang Y; Wang F; Zhang X; Yang J
    Front Genome Ed; 2020; 2():618385. PubMed ID: 34713242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster.
    Ni XY; Zhou ZD; Huang J; Qiao X
    Arch Insect Biochem Physiol; 2020 May; 104(1):e21662. PubMed ID: 32027059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cas9-orthologue-mediated cytosine and adenine base editors recognizing NNAAAA PAM sequences.
    Li M; Zhao Y; Xue X; Zhong J; Lin J; Zhou J; Yu W; Chen J; Qiao Y
    Biotechnol J; 2023 May; 18(5):e2200533. PubMed ID: 36800529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications
    Wu S; Li L; Li M; Sun S; Zhao Y; Xue X; Chen F; Zhong J; Guo J; Qu Q; Wang X; Liu Z; Qiao Y
    Front Cell Dev Biol; 2022; 10():809922. PubMed ID: 35300420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base editing with a Cpf1-cytidine deaminase fusion.
    Li X; Wang Y; Liu Y; Yang B; Wang X; Wei J; Lu Z; Zhang Y; Wu J; Huang X; Yang L; Chen J
    Nat Biotechnol; 2018 Apr; 36(4):324-327. PubMed ID: 29553573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Screening of PAM-Flexible Cas9 Variants for Expanded Genome Editing in the Silkworm (
    Sun L; Zhang T; Lan X; Zhang N; Wang R; Ma S; Zhao P; Xia Q
    Insects; 2024 Mar; 15(4):. PubMed ID: 38667371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytosine Base Editor (hA3A-BE3-NG)-Mediated Multiple Gene Editing for Pyramid Breeding in Pigs.
    Wang Y; Bi D; Qin G; Song R; Yao J; Cao C; Zheng Q; Hou N; Wang Y; Zhao J
    Front Genet; 2020; 11():592623. PubMed ID: 33304388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum.
    Asano Y; Yamashita K; Hasegawa A; Ogasawara T; Iriki H; Muramoto T
    Sci Rep; 2021 May; 11(1):11163. PubMed ID: 34045481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel and Efficient Method for Bacteria Genome Editing Employing both CRISPR/Cas9 and an Antibiotic Resistance Cassette.
    Zhang H; Cheng QX; Liu AM; Zhao GP; Wang J
    Front Microbiol; 2017; 8():812. PubMed ID: 28529507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the genome-targeting scope and the site selectivity of high-precision base editors.
    Tan J; Zhang F; Karcher D; Bock R
    Nat Commun; 2020 Jan; 11(1):629. PubMed ID: 32005820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease modeling by efficient genome editing using a near PAM-less base editor in vivo.
    Rosello M; Serafini M; Mignani L; Finazzi D; Giovannangeli C; Mione MC; Concordet JP; Del Bene F
    Nat Commun; 2022 Jun; 13(1):3435. PubMed ID: 35701478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system.
    Qin L; Li J; Wang Q; Xu Z; Sun L; Alariqi M; Manghwar H; Wang G; Li B; Ding X; Rui H; Huang H; Lu T; Lindsey K; Daniell H; Zhang X; Jin S
    Plant Biotechnol J; 2020 Jan; 18(1):45-56. PubMed ID: 31116473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.