These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 31400657)
1. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure. Xu Y; Zhang D; Hu S; Chen R; Gu Y; Kong X; Tao J; Jiang Y J Mech Behav Biomed Mater; 2019 Nov; 99():225-239. PubMed ID: 31400657 [TBL] [Abstract][Full Text] [Related]
2. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962 [TBL] [Abstract][Full Text] [Related]
3. Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants. Bartolomeu F; Fonseca J; Peixinho N; Alves N; Gasik M; Silva FS; Miranda G J Mech Behav Biomed Mater; 2019 Nov; 99():104-117. PubMed ID: 31349147 [TBL] [Abstract][Full Text] [Related]
4. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727 [TBL] [Abstract][Full Text] [Related]
5. Study on Topology Optimization Design, Manufacturability, and Performance Evaluation of Ti-6Al-4V Porous Structures Fabricated by Selective Laser Melting (SLM). Xu Y; Zhang D; Zhou Y; Wang W; Cao X Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28880229 [TBL] [Abstract][Full Text] [Related]
6. Strength enhancement and modulus modulation in auxetic meta-biomaterials produced by selective laser melting. Chen D; Li D; Pan K; Gao S; Wang B; Sun M; Zhao C; Liu X; Li N Acta Biomater; 2022 Nov; 153():596-613. PubMed ID: 36162764 [TBL] [Abstract][Full Text] [Related]
7. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467 [TBL] [Abstract][Full Text] [Related]
8. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell. Kadkhodapour J; Montazerian H; Darabi ACh; Anaraki AP; Ahmadi SM; Zadpoor AA; Schmauder S J Mech Behav Biomed Mater; 2015 Oct; 50():180-91. PubMed ID: 26143351 [TBL] [Abstract][Full Text] [Related]
9. Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties. Bartolomeu F; Dourado N; Pereira F; Alves N; Miranda G; Silva FS Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110342. PubMed ID: 31761155 [TBL] [Abstract][Full Text] [Related]
10. Microstructure and mechanical properties of additive manufactured porous Ti-33Nb-4Sn scaffolds for orthopaedic applications. Cheng X; Liu S; Chen C; Chen W; Liu M; Li R; Zhang X; Zhou K J Mater Sci Mater Med; 2019 Aug; 30(8):91. PubMed ID: 31388766 [TBL] [Abstract][Full Text] [Related]
11. A Further Analysis on Ti6Al4V Lattice Structures Manufactured by Selective Laser Melting. Maietta S; Gloria A; Improta G; Richetta M; De Santis R; Martorelli M J Healthc Eng; 2019; 2019():3212594. PubMed ID: 31662833 [TBL] [Abstract][Full Text] [Related]
12. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210 [TBL] [Abstract][Full Text] [Related]
13. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials. Xiao D; Yang Y; Su X; Wang D; Sun J Biomed Mater Eng; 2013; 23(5):433-45. PubMed ID: 23988713 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications. Soro N; Attar H; Brodie E; Veidt M; Molotnikov A; Dargusch MS J Mech Behav Biomed Mater; 2019 Sep; 97():149-158. PubMed ID: 31121433 [TBL] [Abstract][Full Text] [Related]
15. Selective Laser Melting of Ti6Al4V sub-millimetric cellular structures: Prediction of dimensional deviations and mechanical performance. Bartolomeu F; Costa MM; Alves N; Miranda G; Silva FS J Mech Behav Biomed Mater; 2021 Jan; 113():104123. PubMed ID: 33032011 [TBL] [Abstract][Full Text] [Related]
16. Physical-Mechanical Characteristics and Microstructure of Ti6Al7Nb Lattice Structures Manufactured by Selective Laser Melting. Cosma C; Drstvensek I; Berce P; Prunean S; Legutko S; Popa C; Balc N Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32948067 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications. Aslan N; Aksakal B; Findik F J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138 [TBL] [Abstract][Full Text] [Related]
18. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications. Li F; Li J; Xu G; Liu G; Kou H; Zhou L J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351 [TBL] [Abstract][Full Text] [Related]
19. Investigation of porous cells interface on elastic property of orthopedic implants: Numerical and experimental studies. Sadati M; Ghofrani S; Mehrizi AA J Mech Behav Biomed Mater; 2021 Aug; 120():104595. PubMed ID: 34058601 [TBL] [Abstract][Full Text] [Related]
20. Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting. Bartolomeu F; Costa MM; Alves N; Miranda G; Silva FS J Mech Behav Biomed Mater; 2020 Oct; 110():103891. PubMed ID: 32957198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]