These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31401092)

  • 1. Synergistic effects between the additions of a disulphide bridge and an N-terminal hydrophobic sidechain on the binding pocket tilting and enhanced Xyn11A activity.
    Boonyaputthikul H; Muhammad A; Roekring S; Rattanarojpong T; Khunrae P; Sutthibutpong T
    Arch Biochem Biophys; 2019 Sep; 672():108068. PubMed ID: 31401092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays.
    Sutthibutpong T; Rattanarojpong T; Khunrae P
    J Biomol Struct Dyn; 2018 Nov; 36(15):3978-3992. PubMed ID: 29129140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of N-terminal modification on the mode of action between the Xyn11A and Xylotetraose.
    Ngenyoung A; Muhammad A; Rattanarojpong T; Sutthibutpong T; Khunrae P
    Int J Biol Macromol; 2021 Feb; 170():240-247. PubMed ID: 33359611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance.
    Li H; Kankaanpää A; Xiong H; Hummel M; Sixta H; Ojamo H; Turunen O
    Enzyme Microb Technol; 2013 Dec; 53(6-7):414-9. PubMed ID: 24315645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand Binding Enhances Millisecond Conformational Exchange in Xylanase B2 from Streptomyces lividans.
    Gagné D; Narayanan C; Nguyen-Thi N; Roux LD; Bernard DN; Brunzelle JS; Couture JF; Agarwal PK; Doucet N
    Biochemistry; 2016 Aug; 55(30):4184-96. PubMed ID: 27387012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and structural analysis of a thermophilic GH11 xylanase from compost metatranscriptome.
    Yi Y; Xu S; Kovalevsky A; Zhang X; Liu D; Wan Q
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7757-7767. PubMed ID: 34553251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the single mutation N9Y on the catalytical properties of xylanase Xyn11A from Cellulomonas uda: a biochemical and molecular dynamic simulation analysis.
    Cayetano-Cruz M; Caro-Gómez LA; Plascencia-Espinosa M; Santiago-Hernández A; Benítez-Cardoza CG; Campos JE; Hidalgo-Lara ME; Zamorano-Carrillo A
    Biosci Biotechnol Biochem; 2021 Aug; 85(9):1971-1985. PubMed ID: 34232281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of N-terminal residues confer thermostability on a Penicillium janthinellum MA21601 xylanase.
    Xiong K; Hou J; Jiang Y; Li X; Teng C; Li Q; Fan G; Yang R; Zhang C
    BMC Biotechnol; 2019 Jul; 19(1):51. PubMed ID: 31345213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation analysis of a surface loop that controls active site access in the GH11 xylanase A from Bacillus subtilis.
    Vieira DS; Ward RJ
    J Mol Model; 2012 Apr; 18(4):1473-9. PubMed ID: 21785938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of oligolignol sizes and binding modes on a GH11 xylanase inhibition revealed by molecular modeling techniques.
    Muhammad A; Khunrae P; Sutthibutpong T
    J Mol Model; 2020 May; 26(6):124. PubMed ID: 32388588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase II.
    Fenel F; Leisola M; Jänis J; Turunen O
    J Biotechnol; 2004 Mar; 108(2):137-43. PubMed ID: 15129722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges.
    Teng C; Jiang Y; Xu Y; Li Q; Li X; Fan G; Xiong K; Yang R; Zhang C; Ma R; Zhu Y; Li J; Wang C
    Int J Biol Macromol; 2019 May; 128():354-362. PubMed ID: 30682487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger.
    Zhou CY; Li TB; Wang YT; Zhu XS; Kang J
    J Gen Appl Microbiol; 2016; 62(2):83-9. PubMed ID: 27118076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution.
    Miyazaki K; Takenouchi M; Kondo H; Noro N; Suzuki M; Tsuda S
    J Biol Chem; 2006 Apr; 281(15):10236-42. PubMed ID: 16467302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference.
    Zhang Y; An J; Yang G; Zhang X; Xie Y; Chen L; Feng Y
    Acta Biochim Biophys Sin (Shanghai); 2016 Oct; 48(10):948-957. PubMed ID: 27563004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of an N-terminal extension on the stability and activity of the GH11 xylanase from Thermobacillus xylanilyticus.
    Song L; Dumon C; Siguier B; André I; Eneyskaya E; Kulminskaya A; Bozonnet S; O'Donohue MJ
    J Biotechnol; 2014 Mar; 174():64-72. PubMed ID: 24440633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of acidic amino acids engineered into the active site cleft of Thermopolyspora flexuosa GH11 xylanase.
    Li H; Turunen O
    Biotechnol Appl Biochem; 2015; 62(4):433-40. PubMed ID: 25196426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase.
    Fonseca-Maldonado R; Vieira DS; Alponti JS; Bonneil E; Thibault P; Ward RJ
    J Biol Chem; 2013 Aug; 288(35):25522-25534. PubMed ID: 23846692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of local residue environmental changes in thermostable mutants of the GH11 xylanase from Bacillus subtilis.
    Silva SB; Pinheiro MP; Fuzo CA; Silva SR; Ferreira TL; Lourenzoni MR; Nonato MC; Vieira DS; Ward RJ
    Int J Biol Macromol; 2017 Apr; 97():574-584. PubMed ID: 28109807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase.
    Acevedo JP; Reetz MT; Asenjo JA; Parra LP
    Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.