These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 31401092)
21. Sequence- and structure-guided improvement of the catalytic performance of a GH11 family xylanase from Bacillus subtilis. Wang L; Cao K; Pedroso MM; Wu B; Gao Z; He B; Schenk G J Biol Chem; 2021 Nov; 297(5):101262. PubMed ID: 34600889 [TBL] [Abstract][Full Text] [Related]
22. π-π stacking interaction is a key factor for the stability of GH11 xylanases at low pH. Ge HH; Qiu Y; Yi ZW; Zeng RY; Zhang GY Int J Biol Macromol; 2019 Mar; 124():895-902. PubMed ID: 30517843 [TBL] [Abstract][Full Text] [Related]
23. Structural insights into N-terminal to C-terminal interactions and implications for thermostability of a (β/α)8-triosephosphate isomerase barrel enzyme. Mahanta P; Bhardwaj A; Kumar K; Reddy VS; Ramakumar S FEBS J; 2015 Sep; 282(18):3543-55. PubMed ID: 26102498 [TBL] [Abstract][Full Text] [Related]
24. Random Mutagenesis of Thermophilic Xylanase for Enhanced Stability and Efficiency Validated through Molecular Docking. Chauhan S; Jaiswal V; Attri C; Seth A Recent Pat Biotechnol; 2020; 14(1):5-15. PubMed ID: 31333132 [TBL] [Abstract][Full Text] [Related]
25. Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. Joo JC; Pack SP; Kim YH; Yoo YJ J Biotechnol; 2011 Jan; 151(1):56-65. PubMed ID: 20959126 [TBL] [Abstract][Full Text] [Related]
26. Tuning the Transglycosylation Reaction of a GH11 Xylanase by a Delicate Enhancement of its Thumb Flexibility. Marneth K; van den Elst H; Cramer-Blok A; Codee J; Overkleeft HS; Aerts JMFG; Ubbink M; Ben Bdira F Chembiochem; 2021 May; 22(10):1743-1749. PubMed ID: 33534182 [TBL] [Abstract][Full Text] [Related]
27. Characterization of temperature dependent and substrate-binding cleft movements in Bacillus circulans family 11 xylanase: a molecular dynamics investigation. Vieira DS; Degrève L; Ward RJ Biochim Biophys Acta; 2009 Oct; 1790(10):1301-6. PubMed ID: 19409448 [TBL] [Abstract][Full Text] [Related]
28. Construction of Thermophilic Xylanase and Its Structural Analysis. Watanabe M; Fukada H; Ishikawa K Biochemistry; 2016 Aug; 55(31):4399-409. PubMed ID: 27410423 [TBL] [Abstract][Full Text] [Related]
29. Engineering the hydrophobic residues of a GH11 xylanase impacts its adsorption onto lignin and its thermostability. Rakotoarivonina H; Hermant B; Aubry N; Rémond C Enzyme Microb Technol; 2015 Dec; 81():47-55. PubMed ID: 26453471 [TBL] [Abstract][Full Text] [Related]
30. Engineering the thermostability of Trichoderma reesei endo-1,4-beta-xylanase II by combination of disulphide bridges. Xiong H; Fenel F; Leisola M; Turunen O Extremophiles; 2004 Oct; 8(5):393-400. PubMed ID: 15278768 [TBL] [Abstract][Full Text] [Related]
31. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. Bai W; Cao Y; Liu J; Wang Q; Jia Z BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339 [TBL] [Abstract][Full Text] [Related]
32. Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking. Jommuengbout P; Pinitglang S; Kyu KL; Ratanakhanokchai K Biosci Biotechnol Biochem; 2009 Apr; 73(4):833-9. PubMed ID: 19352037 [TBL] [Abstract][Full Text] [Related]
33. C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger. Xu W; Liu Y; Ye Y; Liu M; Han L; Song A; Liu L Biotechnol Lett; 2016 Oct; 38(10):1739-45. PubMed ID: 27311309 [TBL] [Abstract][Full Text] [Related]
34. Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24. Kim DY; Lee SH; Lee MJ; Cho HY; Lee JS; Rhee YH; Shin DH; Son KH; Park HY Int J Biol Macromol; 2018 Jan; 106():620-628. PubMed ID: 28813686 [TBL] [Abstract][Full Text] [Related]
35. [Enhancing stability of Trichoderma reesei xylanase (XYN II) by site-directed mutagenesis]. Han C; Yu S; Ouyang J; Li X; Zhou J; Xu Y Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):623-9. PubMed ID: 20684306 [TBL] [Abstract][Full Text] [Related]
36. Stability and activity of Dictyoglomus thermophilum GH11 xylanase and its disulphide mutant at high pressure and temperature. Li H; Voutilainen S; Ojamo H; Turunen O Enzyme Microb Technol; 2015 Mar; 70():66-71. PubMed ID: 25659634 [TBL] [Abstract][Full Text] [Related]
37. Crystallographic and activity-based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Pollet A; Vandermarliere E; Lammertyn J; Strelkov SV; Delcour JA; Courtin CM Proteins; 2009 Nov; 77(2):395-403. PubMed ID: 19422059 [TBL] [Abstract][Full Text] [Related]
38. Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability. Beliën T; Joye IJ; Delcour JA; Courtin CM Protein Eng Des Sel; 2009 Oct; 22(10):587-96. PubMed ID: 19531602 [TBL] [Abstract][Full Text] [Related]
39. Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant. Yang HM; Yao B; Meng K; Wang YR; Bai YG; Wu NF J Ind Microbiol Biotechnol; 2007 Mar; 34(3):213-8. PubMed ID: 17139507 [TBL] [Abstract][Full Text] [Related]
40. [Hydrophobic interaction between beta-sheet B1 and B2 in xylanase XYNB influencing the enzyme thermostability]. Yang HM; Yao B; Luo HY; Zhang WZ; Wang YR; Yuan TZ; Bai YG; Wu NF; Fan YL Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):414-9. PubMed ID: 16108366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]