These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31401272)

  • 41. A simple, efficient, and economical method for recovering DNA from agarose gel.
    Fan CF; Mei XG
    Prep Biochem Biotechnol; 2005; 35(1):71-8. PubMed ID: 15704498
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Agarose electrophoresis of DNA in discontinuous buffers, using a horizontal slab apparatus and a buffer system with improved properties.
    Zsolnai A; Orbán L; Chrambach A
    Electrophoresis; 1993 Mar; 14(3):179-84. PubMed ID: 8486128
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recycling of superfine resolution agarose gel.
    Seng TY; Singh R; Faridah QZ; Tan SG; Alwee SS
    Genet Mol Res; 2013 Jul; 12(3):2360-7. PubMed ID: 23546970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrophoresis of DNA in oriented agarose gels.
    Holmes DL; Stellwagen NC
    J Biomol Struct Dyn; 1989 Oct; 7(2):311-27. PubMed ID: 2604908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. UV-transparent, replaceable agarose gels for molecular-sieve (capillary) electrophoresis of proteins and nucleic acids.
    Hjertén S; Srichaiyo T; Palm A
    Biomed Chromatogr; 1994; 8(2):73-6. PubMed ID: 8044025
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Densitometric quantitation of high resolution agarose gel protein electrophoresis.
    Howerton DA; Check IJ; Hunter RL
    Am J Clin Pathol; 1986 Feb; 85(2):213-8. PubMed ID: 3946305
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of surface wettability on the adhesion of proteins.
    Sethuraman A; Han M; Kane RS; Belfort G
    Langmuir; 2004 Aug; 20(18):7779-88. PubMed ID: 15323531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An agarose gel subfractionation technique for the recovery of low-abundance proteins.
    von Horsten HH
    Anal Biochem; 2003 May; 316(1):139-41. PubMed ID: 12694738
    [No Abstract]   [Full Text] [Related]  

  • 49. Gel-electrophoresis based method for biomolecular interaction.
    Arakawa T; Nakagawa M; Tomioka Y; Sakuma C; Li C; Sato T; Sato R; Shibata T; Kurosawa Y; Akuta T
    Methods Cell Biol; 2022; 169():67-95. PubMed ID: 35623712
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Western blotting analysis of proteins separated by agarose native gel electrophoresis.
    Sakuma C; Sato T; Shibata T; Nakagawa M; Kurosawa Y; Okumura CJ; Maruyama T; Arakawa T; Akuta T
    Int J Biol Macromol; 2021 Jan; 166():1106-1110. PubMed ID: 33157142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reproducibility of mobility in gel electrophoresis.
    Zakharov SF; Chang HT; Chrambach A
    Electrophoresis; 1996 Jan; 17(1):84-90. PubMed ID: 8907523
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Albumin-lysozyme interactions: Cooperative adsorption on titanium and enzymatic activity.
    Rösch C; Kratz F; Hering T; Trautmann S; Umanskaya N; Tippkötter N; Müller-Renno C; Ulber R; Hannig M; Ziegler C
    Colloids Surf B Biointerfaces; 2017 Jan; 149():115-121. PubMed ID: 27744208
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stacking of unlabeled sodium dodecyl sulfate-proteins within a fluorimetrically detected moving boundary, electroelution and mass spectrometric identification.
    Yefimov S; Sjomeling C; Yergey AL; Chrambach A
    Electrophoresis; 2001 Apr; 22(6):999-1003. PubMed ID: 11358154
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism and characteristics of protein release from lactitol-based cross-linked hydrogel.
    Han JH; Krochta JM; Hsieh YL; Kurth MJ
    J Agric Food Chem; 2000 Nov; 48(11):5658-65. PubMed ID: 11087535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of protein adsorption on regenerated cellulose-based immobilized copper ion affinity membranes.
    Wu CY; Suen SY; Chen SC; Tzeng JH
    J Chromatogr A; 2003 May; 996(1-2):53-70. PubMed ID: 12830908
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computer simulation of the variable agarose fiber dimensions on the basis of mobility data derived from gel electrophoresis and using the Ogston theory.
    Tietz D; Chrambach A
    Anal Biochem; 1987 Mar; 161(2):395-411. PubMed ID: 3578803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A non-barbital buffer for immunoelectrophoresis and zone electrophoresis in agarose gels.
    Monthony JF; Wallace EG; Allen DM
    Clin Chem; 1978 Oct; 24(10):1825-7. PubMed ID: 568042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of agarose--DNA affinity on the electrophoretic separation of DNA fragments in agarose gels.
    Smith SS; Gilroy TE; Ferrari FA
    Anal Biochem; 1983 Jan; 128(1):138-51. PubMed ID: 6303150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein electrophoresis in agarose gels for separating high molecular weight proteins.
    Greaser ML; Warren CM
    Methods Mol Biol; 2012; 869():111-8. PubMed ID: 22585481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of a soluble anionic polymer on the electrophoresis of proteins.
    Shimura K; Kasai K
    Electrophoresis; 1989 Apr; 10(4):238-42. PubMed ID: 2472957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.