These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 31401469)

  • 1. Deep neural networks are superior to dermatologists in melanoma image classification.
    Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS
    Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks.
    Maron RC; Weichenthal M; Utikal JS; Hekler A; Berking C; Hauschild A; Enk AH; Haferkamp S; Klode J; Schadendorf D; Jansen P; Holland-Letz T; Schilling B; von Kalle C; Fröhling S; Gaiser MR; Hartmann D; Gesierich A; Kähler KC; Wehkamp U; Karoglan A; Bär C; Brinker TJ;
    Eur J Cancer; 2019 Sep; 119():57-65. PubMed ID: 31419752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
    Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I
    Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.
    Maron RC; Utikal JS; Hekler A; Hauschild A; Sattler E; Sondermann W; Haferkamp S; Schilling B; Heppt MV; Jansen P; Reinholz M; Franklin C; Schmitt L; Hartmann D; Krieghoff-Henning E; Schmitt M; Weichenthal M; von Kalle C; Fröhling S; Brinker TJ
    J Med Internet Res; 2020 Sep; 22(9):e18091. PubMed ID: 32915161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior skin cancer classification by the combination of human and artificial intelligence.
    Hekler A; Utikal JS; Enk AH; Hauschild A; Weichenthal M; Maron RC; Berking C; Haferkamp S; Klode J; Schadendorf D; Schilling B; Holland-Letz T; Izar B; von Kalle C; Fröhling S; Brinker TJ;
    Eur J Cancer; 2019 Oct; 120():114-121. PubMed ID: 31518967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017.
    Marchetti MA; Liopyris K; Dusza SW; Codella NCF; Gutman DA; Helba B; Kalloo A; Halpern AC;
    J Am Acad Dermatol; 2020 Mar; 82(3):622-627. PubMed ID: 31306724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images.
    Hekler A; Utikal JS; Enk AH; Solass W; Schmitt M; Klode J; Schadendorf D; Sondermann W; Franklin C; Bestvater F; Flaig MJ; Krahl D; von Kalle C; Fröhling S; Brinker TJ
    Eur J Cancer; 2019 Sep; 118():91-96. PubMed ID: 31325876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Holland-Letz T; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 May; 113():47-54. PubMed ID: 30981091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions.
    Haenssle HA; Fink C; Toberer F; Winkler J; Stolz W; Deinlein T; Hofmann-Wellenhof R; Lallas A; Emmert S; Buhl T; Zutt M; Blum A; Abassi MS; Thomas L; Tromme I; Tschandl P; Enk A; Rosenberger A;
    Ann Oncol; 2020 Jan; 31(1):137-143. PubMed ID: 31912788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dermatologist-level classification of skin cancer with deep neural networks.
    Esteva A; Kuprel B; Novoa RA; Ko J; Swetter SM; Blau HM; Thrun S
    Nature; 2017 Feb; 542(7639):115-118. PubMed ID: 28117445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening?
    Cerminara SE; Cheng P; Kostner L; Huber S; Kunz M; Maul JT; Böhm JS; Dettwiler CF; Geser A; Jakopović C; Stoffel LM; Peter JK; Levesque M; Navarini AA; Maul LV
    Eur J Cancer; 2023 Sep; 190():112954. PubMed ID: 37453242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition.
    Winkler JK; Sies K; Fink C; Toberer F; Enk A; Abassi MS; Fuchs T; Haenssle HA
    Eur J Cancer; 2021 Mar; 145():146-154. PubMed ID: 33465706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathologist-level classification of histopathological melanoma images with deep neural networks.
    Hekler A; Utikal JS; Enk AH; Berking C; Klode J; Schadendorf D; Jansen P; Franklin C; Holland-Letz T; Krahl D; von Kalle C; Fröhling S; Brinker TJ
    Eur J Cancer; 2019 Jul; 115():79-83. PubMed ID: 31129383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computerizing the first step of the two-step algorithm in dermoscopy: A convolutional neural network for differentiating melanocytic from non-melanocytic skin lesions.
    Winkler JK; Kommoss KS; Vollmer AS; Blum A; Stolz W; Kränke T; Hofmann-Wellenhof R; Enk A; Toberer F; Haenssle HA
    Eur J Cancer; 2024 Oct; 210():114297. PubMed ID: 39217816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts.
    Haggenmüller S; Maron RC; Hekler A; Utikal JS; Barata C; Barnhill RL; Beltraminelli H; Berking C; Betz-Stablein B; Blum A; Braun SA; Carr R; Combalia M; Fernandez-Figueras MT; Ferrara G; Fraitag S; French LE; Gellrich FF; Ghoreschi K; Goebeler M; Guitera P; Haenssle HA; Haferkamp S; Heinzerling L; Heppt MV; Hilke FJ; Hobelsberger S; Krahl D; Kutzner H; Lallas A; Liopyris K; Llamas-Velasco M; Malvehy J; Meier F; Müller CSL; Navarini AA; Navarrete-Dechent C; Perasole A; Poch G; Podlipnik S; Requena L; Rotemberg VM; Saggini A; Sangueza OP; Santonja C; Schadendorf D; Schilling B; Schlaak M; Schlager JG; Sergon M; Sondermann W; Soyer HP; Starz H; Stolz W; Vale E; Weyers W; Zink A; Krieghoff-Henning E; Kather JN; von Kalle C; Lipka DB; Fröhling S; Hauschild A; Kittler H; Brinker TJ
    Eur J Cancer; 2021 Oct; 156():202-216. PubMed ID: 34509059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.
    Marchetti MA; Codella NCF; Dusza SW; Gutman DA; Helba B; Kalloo A; Mishra N; Carrera C; Celebi ME; DeFazio JL; Jaimes N; Marghoob AA; Quigley E; Scope A; Yélamos O; Halpern AC;
    J Am Acad Dermatol; 2018 Feb; 78(2):270-277.e1. PubMed ID: 28969863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions.
    Brinker TJ; Hekler A; Enk AH; von Kalle C
    PLoS One; 2019; 14(6):e0218713. PubMed ID: 31233565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanoma detection by analysis of clinical images using convolutional neural network.
    Nasr-Esfahani E; Samavi S; Karimi N; Soroushmehr SM; Jafari MH; Ward K; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1373-1376. PubMed ID: 28268581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark.
    Brinker TJ; Hekler A; Hauschild A; Berking C; Schilling B; Enk AH; Haferkamp S; Karoglan A; von Kalle C; Weichenthal M; Sattler E; Schadendorf D; Gaiser MR; Klode J; Utikal JS
    Eur J Cancer; 2019 Apr; 111():30-37. PubMed ID: 30802784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.