BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31401488)

  • 1. Stability of a chronic implanted brain-computer interface in late-stage amyotrophic lateral sclerosis.
    Pels EGM; Aarnoutse EJ; Leinders S; Freudenburg ZV; Branco MP; van der Vijgh BH; Snijders TJ; Denison T; Vansteensel MJ; Ramsey NF
    Clin Neurophysiol; 2019 Oct; 130(10):1798-1803. PubMed ID: 31401488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis-implications for brain-computer interfacing.
    Kellmeyer P; Grosse-Wentrup M; Schulze-Bonhage A; Ziemann U; Ball T
    J Neural Eng; 2018 Aug; 15(4):041003. PubMed ID: 29676287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The current state of electrocorticography-based brain-computer interfaces.
    Miller KJ; Hermes D; Staff NP
    Neurosurg Focus; 2020 Jul; 49(1):E2. PubMed ID: 32610290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interfaces in amyotrophic lateral sclerosis: A metanalysis.
    Marchetti M; Priftis K
    Clin Neurophysiol; 2015 Jun; 126(6):1255-1263. PubMed ID: 25449558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis.
    Degenhart AD; Hiremath SV; Yang Y; Foldes S; Collinger JL; Boninger M; Tyler-Kabara EC; Wang W
    J Neural Eng; 2018 Apr; 15(2):026021. PubMed ID: 29160240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online speech synthesis using a chronically implanted brain-computer interface in an individual with ALS.
    Angrick M; Luo S; Rabbani Q; Candrea DN; Shah S; Milsap GW; Anderson WS; Gordon CR; Rosenblatt KR; Clawson L; Tippett DC; Maragakis N; Tenore FV; Fifer MS; Hermansky H; Ramsey NF; Crone NE
    Sci Rep; 2024 Apr; 14(1):9617. PubMed ID: 38671062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An exploration of BCI performance variations in people with amyotrophic lateral sclerosis using longitudinal EEG data.
    Shahriari Y; Vaughan TM; McCane LM; Allison BZ; Wolpaw JR; Krusienski DJ
    J Neural Eng; 2019 Sep; 16(5):056031. PubMed ID: 31108477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term stability of the chronic epidural wireless recorder WIMAGINE in tetraplegic patients.
    Larzabal C; Bonnet S; Costecalde T; Auboiroux V; Charvet G; Chabardes S; Aksenova T; Sauter-Starace F
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34425566
    [No Abstract]   [Full Text] [Related]  

  • 9. Stable Decoding from a Speech BCI Enables Control for an Individual with ALS without Recalibration for 3 Months.
    Luo S; Angrick M; Coogan C; Candrea DN; Wyse-Sookoo K; Shah S; Rabbani Q; Milsap GW; Weiss AR; Anderson WS; Tippett DC; Maragakis NJ; Clawson LL; Vansteensel MJ; Wester BA; Tenore FV; Hermansky H; Fifer MS; Ramsey NF; Crone NE
    Adv Sci (Weinh); 2023 Dec; 10(35):e2304853. PubMed ID: 37875404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface.
    Silvoni S; Konicar L; Prats-Sedano MA; Garcia-Cossio E; Genna C; Volpato C; Cavinato M; Paggiaro A; Veser S; De Massari D; Birbaumer N
    Clin Neurophysiol; 2016 Jan; 127(1):936-945. PubMed ID: 26209283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis.
    Wolpaw JR; Bedlack RS; Reda DJ; Ringer RJ; Banks PG; Vaughan TM; Heckman SM; McCane LM; Carmack CS; Winden S; McFarland DJ; Sellers EW; Shi H; Paine T; Higgins DS; Lo AC; Patwa HS; Hill KJ; Huang GD; Ruff RL
    Neurology; 2018 Jul; 91(3):e258-e267. PubMed ID: 29950436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication.
    Silvoni S; Cavinato M; Volpato C; Ruf CA; Birbaumer N; Piccione F
    Amyotroph Lateral Scler Frontotemporal Degener; 2013 Sep; 14(5-6):390-6. PubMed ID: 23445258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.
    Marchetti M; Piccione F; Silvoni S; Gamberini L; Priftis K
    Neurorehabil Neural Repair; 2013 Jun; 27(5):430-8. PubMed ID: 23353184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis.
    Geronimo A; Simmons Z; Schiff SJ
    J Neural Eng; 2016 Apr; 13(2):026002. PubMed ID: 26824590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards clinical application of implantable brain-computer interfaces for people with late-stage ALS: medical and ethical considerations.
    Vansteensel MJ; Klein E; van Thiel G; Gaytant M; Simmons Z; Wolpaw JR; Vaughan TM
    J Neurol; 2023 Mar; 270(3):1323-1336. PubMed ID: 36450968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using fMRI to localize target regions for implanted brain-computer interfaces in locked-in syndrome.
    Leinders S; Vansteensel MJ; Piantoni G; Branco MP; Freudenburg ZV; Gebbink TA; Pels EGM; Raemaekers MAH; Schippers A; Aarnoutse EJ; Ramsey NF
    Clin Neurophysiol; 2023 Nov; 155():1-15. PubMed ID: 37657190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience.
    Oxley TJ; Yoo PE; Rind GS; Ronayne SM; Lee CMS; Bird C; Hampshire V; Sharma RP; Morokoff A; Williams DL; MacIsaac C; Howard ME; Irving L; Vrljic I; Williams C; John SE; Weissenborn F; Dazenko M; Balabanski AH; Friedenberg D; Burkitt AN; Wong YT; Drummond KJ; Desmond P; Weber D; Denison T; Hochberg LR; Mathers S; O'Brien TJ; May CN; Mocco J; Grayden DB; Campbell BCV; Mitchell P; Opie NL
    J Neurointerv Surg; 2021 Feb; 13(2):102-108. PubMed ID: 33115813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A region-based two-step P300-based brain-computer interface for patients with amyotrophic lateral sclerosis.
    Ikegami S; Takano K; Kondo K; Saeki N; Kansaku K
    Clin Neurophysiol; 2014 Nov; 125(11):2305-2312. PubMed ID: 24731767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assistive device with conventional, alternative, and brain-computer interface inputs to enhance interaction with the environment for people with amyotrophic lateral sclerosis: a feasibility and usability study.
    Schettini F; Riccio A; Simione L; Liberati G; Caruso M; Frasca V; Calabrese B; Mecella M; Pizzimenti A; Inghilleri M; Mattia D; Cincotti F
    Arch Phys Med Rehabil; 2015 Mar; 96(3 Suppl):S46-53. PubMed ID: 25721547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility and lower limits of frequency detection in surface electrode stimulation for somatosensory brain-computer interface in humans.
    Kramer DR; Lamorie-Foote K; Barbaro M; Lee MB; Peng T; Gogia A; Nune G; Liu CY; Kellis SS; Lee B
    Neurosurg Focus; 2020 Feb; 48(2):E2. PubMed ID: 32006952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.