BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31401521)

  • 21. Nutrient and toxic elements in soils and plants across 10 urban community gardens: Comparing pXRF and ICP-based soil measurements.
    McStay AC; Walser SL; Sirkovich EC; Perdrial N; Richardson JB
    J Environ Qual; 2022 May; 51(3):439-450. PubMed ID: 35419845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the spatially varying relationships between cadmium accumulations and the main influential factors in the rice-wheat rotation system in a large-scale area.
    Qu M; Chen J; Huang B; Zhao Y
    Sci Total Environ; 2020 Sep; 736():139565. PubMed ID: 32485375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of Soil Heavy Metal Distribution Using Geographically Weighted Regression Kriging.
    Fu P; Yang Y; Zou Y
    Bull Environ Contam Toxicol; 2022 Feb; 108(2):344-350. PubMed ID: 34741183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Information depth of elements affects accuracy of parallel pXRF in situ measurements of soils.
    Hangen E; Čermák P; Geuß U; Hlisnikovský L
    Environ Monit Assess; 2019 Oct; 191(11):661. PubMed ID: 31650240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Portable X-ray fluorescence for autonomous in-situ characterization of chloride in oil and gas waste.
    Nava V; Sihota N; Hoelen T; Johnson A; Lowry GV
    Environ Pollut; 2023 Jan; 316(Pt 2):120558. PubMed ID: 36328285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quick Analysis of Organic Amendments via Portable X-ray Fluorescence Spectrometry.
    López-Núñez R; Ajmal-Poley F; González-Pérez JA; Bello-López MA; Burgos-Doménech P
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31698776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis].
    Ran J; Wang DJ; Wang C; Bo LJ; Zheng JC; Yao LP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3113-8. PubMed ID: 25752069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data.
    Kim SM; Choi Y
    Int J Environ Res Public Health; 2017 Jun; 14(6):. PubMed ID: 28629168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry.
    McGladdery C; Weindorf DC; Chakraborty S; Li B; Paulette L; Podar D; Pearson D; Kusi NYO; Duda B
    J Environ Manage; 2018 Mar; 210():210-225. PubMed ID: 29348058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast Monitoring Soil Environmental Qualities of Heavy Metal by Portable X-Ray Fluorescence Spectrometer.
    Wang B; Yu JX; Huang B; Hu WY; Chang Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1735-40. PubMed ID: 26601400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture.
    Weindorf DC; Zhu Y; Chakraborty S; Bakr N; Huang B
    Environ Monit Assess; 2012 Jan; 184(1):217-27. PubMed ID: 21384116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania.
    Weindorf DC; Paulette L; Man T
    Environ Pollut; 2013 Nov; 182():92-100. PubMed ID: 23906556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability.
    Benedet L; Nilsson MS; Silva SHG; Pelegrino MHP; Mancini M; Menezes MD; Guilherme LRG; Curi N
    An Acad Bras Cienc; 2021; 93(4):e20200646. PubMed ID: 34550165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating trace elements in urban forest soils across three contrasting New England USA towns and cities by pXRF and mass spectrometry.
    Sirkovich EC; Walser SL; Perdrial N; Richardson JB
    Environ Pollut; 2023 Nov; 336():122441. PubMed ID: 37652231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Space-time quantitative source apportionment of soil heavy metal concentration increments.
    Yang Y; Christakos G; Guo M; Xiao L; Huang W
    Environ Pollut; 2017 Apr; 223():560-566. PubMed ID: 28131479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method.
    Ravansari R; Wilson SC; Tighe M
    Environ Int; 2020 Jan; 134():105250. PubMed ID: 31751829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diagnosing trace metals contamination in ageing stormwater constructed wetlands by portable X-ray Fluorescence Analyzer (pXRF).
    Lenormand É; Kustner C; Combroux I; Bois P; Wanko A
    Sci Total Environ; 2022 Oct; 844():157097. PubMed ID: 35780880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial Distribution and Potential Sources of Five Heavy Metals and One Metalloid in the Soils of Xiamen City, China.
    Huang S; Shao G; Wang L; Tang L
    Bull Environ Contam Toxicol; 2019 Aug; 103(2):308-315. PubMed ID: 31190165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China.
    Zhang C; Yang Y; Li W; Zhang C; Zhang R; Mei Y; Liao X; Liu Y
    Environ Monit Assess; 2015 Sep; 187(9):556. PubMed ID: 26251059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elemental composition and moisture prediction in manure by portable X-ray fluorescence spectroscopy using random forest regression.
    Sapkota Y; Drake BL; McDonald LM; Griggs TC; Basden TJ
    J Environ Qual; 2020 Mar; 49(2):472-482. PubMed ID: 33016429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.