BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 31401776)

  • 1. Transport of Folded Proteins by the Tat System.
    Frain KM; Robinson C; van Dijl JM
    Protein J; 2019 Aug; 38(4):377-388. PubMed ID: 31401776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in
    Fröbel J; Blümmel AS; Drepper F; Warscheid B; Müller M
    J Biol Chem; 2019 Sep; 294(38):13902-13914. PubMed ID: 31341014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
    Huang Q; Palmer T
    mBio; 2017 Aug; 8(4):. PubMed ID: 28765221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032.
    Oertel D; Schmitz S; Freudl R
    PLoS One; 2015; 10(4):e0123413. PubMed ID: 25837592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting of proteins to the twin-arginine translocation pathway.
    Palmer T; Stansfeld PJ
    Mol Microbiol; 2020 May; 113(5):861-871. PubMed ID: 31971282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria.
    Robinson C; Matos CF; Beck D; Ren C; Lawrence J; Vasisht N; Mendel S
    Biochim Biophys Acta; 2011 Mar; 1808(3):876-84. PubMed ID: 21126506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Tat system of Gram-positive bacteria.
    Goosens VJ; Monteferrante CG; van Dijl JM
    Biochim Biophys Acta; 2014 Aug; 1843(8):1698-706. PubMed ID: 24140208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twin-arginine-dependent translocation of folded proteins.
    Fröbel J; Rose P; Müller M
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1029-46. PubMed ID: 22411976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB.
    Fröbel J; Rose P; Lausberg F; Blümmel AS; Freudl R; Müller M
    Nat Commun; 2012; 3():1311. PubMed ID: 23250441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location and mobility of twin arginine translocase subunits in the Escherichia coli plasma membrane.
    Ray N; Nenninger A; Mullineaux CW; Robinson C
    J Biol Chem; 2005 May; 280(18):17961-8. PubMed ID: 15728576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase.
    Huang Q; Alcock F; Kneuper H; Deme JC; Rollauer SE; Lea SM; Berks BC; Palmer T
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1958-E1967. PubMed ID: 28223511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twin-Arginine Protein Translocation.
    Goosens VJ; van Dijl JM
    Curr Top Microbiol Immunol; 2017; 404():69-94. PubMed ID: 27121927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternative model of the twin arginine translocation system.
    Brüser T; Sanders C
    Microbiol Res; 2003; 158(1):7-17. PubMed ID: 12608575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of the TatB component of the twin-arginine translocation system.
    Zhang Y; Wang L; Hu Y; Jin C
    Biochim Biophys Acta; 2014 Jul; 1838(7):1881-8. PubMed ID: 24699374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones.
    Kuzniatsova L; Winstone TM; Turner RJ
    Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation.
    Fröbel J; Rose P; Müller M
    J Biol Chem; 2011 Dec; 286(51):43679-43689. PubMed ID: 22041896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The twin-arginine transport system: moving folded proteins across membranes.
    Sargent F
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):835-47. PubMed ID: 17956229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Escherichia coli TatABC system and a Bacillus subtilis TatAC-type system recognise three distinct targeting determinants in twin-arginine signal peptides.
    Mendel S; McCarthy A; Barnett JP; Eijlander RT; Nenninger A; Kuipers OP; Robinson C
    J Mol Biol; 2008 Jan; 375(3):661-72. PubMed ID: 18036542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide.
    Blümmel AS; Drepper F; Knapp B; Eimer E; Warscheid B; Müller M; Fröbel J
    J Biol Chem; 2017 Dec; 292(52):21320-21329. PubMed ID: 29089385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli.
    Alami M; Lüke I; Deitermann S; Eisner G; Koch HG; Brunner J; Müller M
    Mol Cell; 2003 Oct; 12(4):937-46. PubMed ID: 14580344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.