These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 31402644)
1. Transient Hybridization Directed Nanoflare for Single-Molecule miRNA Imaging. Li L; Yu Y; Wang C; Han Q; Su X Anal Chem; 2019 Sep; 91(17):11122-11128. PubMed ID: 31402644 [TBL] [Abstract][Full Text] [Related]
2. A hairpin DNA-fueled nanoflare for simultaneous illumination of two microRNAs in drug-induced nephrotoxic cells with target catalytic recycling amplification. Gao H; Li J; Jia Y; Yu XA; Qi J; Tian J; Yu BY Analyst; 2019 Dec; 144(24):7178-7184. PubMed ID: 31647062 [TBL] [Abstract][Full Text] [Related]
3. Logic-signal-based multiplex detection of MiRNAs with high tension hybridization and multiple signal amplification. Tang Y; He X; Yuan R; Liu X; Zhao Y; Wang T; Chen H; Feng X Analyst; 2020 Jun; 145(12):4314-4320. PubMed ID: 32400825 [TBL] [Abstract][Full Text] [Related]
4. Direct Kinetic Fingerprinting for High-Accuracy Single-Molecule Counting of Diverse Disease Biomarkers. Mandal S; Li Z; Chatterjee T; Khanna K; Montoya K; Dai L; Petersen C; Li L; Tewari M; Johnson-Buck A; Walter NG Acc Chem Res; 2021 Jan; 54(2):388-402. PubMed ID: 33382587 [TBL] [Abstract][Full Text] [Related]
5. Cascade signal amplification sensing strategy for highly specific and sensitive detection of homologous microRNAs in different molecular subtypes of breast cancer. Qiao L; Wu C; Cai Z; Wu X; Wu P; Cai C Anal Chim Acta; 2020 Jan; 1093():86-92. PubMed ID: 31735218 [TBL] [Abstract][Full Text] [Related]
6. Thermophoretic Detection of Exosomal microRNAs by Nanoflares. Zhao J; Liu C; Li Y; Ma Y; Deng J; Li L; Sun J J Am Chem Soc; 2020 Mar; 142(11):4996-5001. PubMed ID: 32134270 [TBL] [Abstract][Full Text] [Related]
7. Ratiometric Fluorescence Imaging of Intracellular MicroRNA with NIR-Assisted Signal Amplification by a Ru-SiO Deng X; Liu X; Wu S; Zang S; Lin X; Zhao Y; Duan C ACS Appl Mater Interfaces; 2021 Sep; 13(38):45214-45223. PubMed ID: 34524789 [TBL] [Abstract][Full Text] [Related]
8. Amplified Split Aptamer Sensor Delivered Using Block Copolymer Nanoparticles for Small Molecule Imaging in Living Cells. Zhang CH; Wang H; Liu JW; Sheng YY; Chen J; Zhang P; Jiang JH ACS Sens; 2018 Dec; 3(12):2526-2531. PubMed ID: 30468073 [TBL] [Abstract][Full Text] [Related]
9. An Enzyme-Free MicroRNA Assay Based On Fluorescence Counting of Click Chemical Ligation-Illuminated Magnetic Nanoparticles with Total Internal Reflection Fluorescence Microscopy. Qi Y; Lu X; Feng Q; Fan W; Liu C; Li Z ACS Sens; 2018 Dec; 3(12):2667-2674. PubMed ID: 30456947 [TBL] [Abstract][Full Text] [Related]
10. A tetrahedral DNA nanoflare for fluorometric determination of nucleic acids and imaging of microRNA using toehold strands. Li L; Meng Y; Li L; Wang S; Ding J; Zhou W Mikrochim Acta; 2019 Nov; 186(12):824. PubMed ID: 31754805 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647 [TBL] [Abstract][Full Text] [Related]
12. g-C Wang Y; Wu N; Guo F; Gao R; Yang T; Wang J J Mater Chem B; 2019 Dec; 7(47):7566-7573. PubMed ID: 31729497 [TBL] [Abstract][Full Text] [Related]
13. Erythrocyte membrane-biointerfaced spherical nucleic acids: Robust performance for microRNA quantification. Yang Y; Xue L; Zheng J; Li C; Huang Y; Xiang Y; Wang Z; Li G Anal Chim Acta; 2019 Nov; 1080():189-195. PubMed ID: 31409469 [TBL] [Abstract][Full Text] [Related]
14. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals. Zhang N; Ye S; Wang Z; Li R; Wang M ACS Sens; 2019 Apr; 4(4):924-930. PubMed ID: 30924337 [TBL] [Abstract][Full Text] [Related]
15. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals. Li J; Schachermeyer S; Wang Y; Yin Y; Zhong W Anal Chem; 2009 Dec; 81(23):9723-9. PubMed ID: 19831385 [TBL] [Abstract][Full Text] [Related]
16. Fluorescent Biosensors Based on Single-Molecule Counting. Ma F; Li Y; Tang B; Zhang CY Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695 [TBL] [Abstract][Full Text] [Related]
17. Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials. Zhou Y; Zhang J; Zhao L; Li Y; Chen H; Li S; Cheng Y ACS Appl Mater Interfaces; 2016 Jan; 8(2):1520-6. PubMed ID: 26709618 [TBL] [Abstract][Full Text] [Related]
19. Biomineralized Metal-Organic Framework Nanoparticles Enable Enzymatic Rolling Circle Amplification in Living Cells for Ultrasensitive MicroRNA Imaging. Zhang J; He M; Nie C; He M; Pan Q; Liu C; Hu Y; Yi J; Chen T; Chu X Anal Chem; 2019 Jul; 91(14):9049-9057. PubMed ID: 31274280 [TBL] [Abstract][Full Text] [Related]
20. Single-molecule catalytic hairpin assembly for rapid and direct quantification of circulating miRNA biomarkers. Hu X; Fan J; Duan B; Zhang H; He Y; Duan P; Li X Anal Chim Acta; 2018 Dec; 1042():109-115. PubMed ID: 30428976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]