BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31402779)

  • 1. Epigenetic modifications associated with pathophysiological effects of lead exposure.
    Khalid M; Abdollahi M
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(4):235-287. PubMed ID: 31402779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of lead exposure on histone modifications: A review.
    Kumar K; Anjali S; Sharma S
    J Biochem Mol Toxicol; 2024 Jan; 38(1):e23547. PubMed ID: 37867311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone acetylation maps in aged mice developmentally exposed to lead: epigenetic drift and Alzheimer-related genes.
    Eid A; Bihaqi SW; Hemme C; Gaspar JM; Hart RP; Zawia NH
    Epigenomics; 2018 May; 10(5):573-583. PubMed ID: 29722544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic Basis of Lead-Induced Neurological Disorders.
    Wang T; Zhang J; Xu Y
    Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32645824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early life exposure to lead (Pb) and changes in DNA methylation: relevance to Alzheimer's disease.
    Bihaqi SW
    Rev Environ Health; 2019 Jun; 34(2):187-195. PubMed ID: 30710487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats.
    Luo M; Xu Y; Cai R; Tang Y; Ge MM; Liu ZH; Xu L; Hu F; Ruan DY; Wang HL
    Toxicol Lett; 2014 Feb; 225(1):78-85. PubMed ID: 24291742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Epigenetics' implication in autism spectrum disorders: A review].
    Hamza M; Halayem S; Mrad R; Bourgou S; Charfi F; Belhadj A
    Encephale; 2017 Aug; 43(4):374-381. PubMed ID: 27692350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early-life Pb exposure as a potential risk factor for Alzheimer's disease: are there hazards for the Mexican population?
    Chin-Chan M; Cobos-Puc L; Alvarado-Cruz I; Bayar M; Ermolaeva M
    J Biol Inorg Chem; 2019 Dec; 24(8):1285-1303. PubMed ID: 31773268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-going consequences of in utero exposure of Pb: An epigenetic perspective.
    Tasin FR; Ahmed A; Halder D; Mandal C
    J Appl Toxicol; 2022 Oct; 42(10):1553-1569. PubMed ID: 35023172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: implications for Alzheimer's disease.
    Bihaqi SW; Huang H; Wu J; Zawia NH
    J Alzheimers Dis; 2011; 27(4):819-33. PubMed ID: 21891863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex- and brain region- specific effects of prenatal stress and lead exposure on permissive and repressive post-translational histone modifications from embryonic development through adulthood.
    Varma G; Sobolewski M; Cory-Slechta DA; Schneider JS
    Neurotoxicology; 2017 Sep; 62():207-217. PubMed ID: 28712943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetically regulated microRNAs in Alzheimer's disease.
    Van den Hove DL; Kompotis K; Lardenoije R; Kenis G; Mill J; Steinbusch HW; Lesch KP; Fitzsimons CP; De Strooper B; Rutten BP
    Neurobiol Aging; 2014 Apr; 35(4):731-45. PubMed ID: 24238656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs.
    Sankrityayan H; Kulkarni YA; Gaikwad AB
    Pharmacol Res; 2019 Mar; 141():574-585. PubMed ID: 30695734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications.
    Han X; Huang Q
    Toxicology; 2021 May; 456():152780. PubMed ID: 33862174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental exposure to lead, but not other neurotoxic metals, relates to core elements of ADHD in Romanian children: performance and questionnaire data.
    Nicolescu R; Petcu C; Cordeanu A; Fabritius K; Schlumpf M; Krebs R; Krämer U; Winneke G
    Environ Res; 2010 Jul; 110(5):476-83. PubMed ID: 20434143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of epigenetics in lysosomal storage disorders: Uncharted territory.
    Hassan S; Sidransky E; Tayebi N
    Mol Genet Metab; 2017 Nov; 122(3):10-18. PubMed ID: 28918065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Health repercussions of environmental exposure to lead: Methylation perspective.
    Shiek SS; Mani MS; Kabekkodu SP; Dsouza HS
    Toxicology; 2021 Sep; 461():152927. PubMed ID: 34492314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetics of Huntington's Disease.
    Bassi S; Tripathi T; Monziani A; Di Leva F; Biagioli M
    Adv Exp Med Biol; 2017; 978():277-299. PubMed ID: 28523552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental epigenetics: from novelty to scientific discipline.
    Burris HH; Baccarelli AA
    J Appl Toxicol; 2014 Feb; 34(2):113-6. PubMed ID: 23836446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecogenetics of lead toxicity and its influence on risk assessment.
    Mani MS; Kabekkodu SP; Joshi MB; Dsouza HS
    Hum Exp Toxicol; 2019 Sep; 38(9):1031-1059. PubMed ID: 31117811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.