BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 31402913)

  • 1. NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer.
    Audrito V; Managò A; Gaudino F; Sorci L; Messana VG; Raffaelli N; Deaglio S
    Front Immunol; 2019; 10():1720. PubMed ID: 31402913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding.
    Drew JE; Farquharson AJ; Horgan GW; Williams LM
    J Nutr Biochem; 2016 Nov; 37():20-29. PubMed ID: 27592202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cancer metabolic reprogramming and immune response.
    Xia L; Oyang L; Lin J; Tan S; Han Y; Wu N; Yi P; Tang L; Pan Q; Rao S; Liang J; Tang Y; Su M; Luo X; Yang Y; Shi Y; Wang H; Zhou Y; Liao Q
    Mol Cancer; 2021 Feb; 20(1):28. PubMed ID: 33546704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinamide adenine dinucleotide metabolism in the immune response, autoimmunity and inflammageing.
    Navarro MN; Gómez de Las Heras MM; Mittelbrunn M
    Br J Pharmacol; 2022 May; 179(9):1839-1856. PubMed ID: 33817782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunometabolic Checkpoints of Treg Dynamics: Adaptation to Microenvironmental Opportunities and Challenges.
    Pacella I; Piconese S
    Front Immunol; 2019; 10():1889. PubMed ID: 31507585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolites in the Tumor Microenvironment Reprogram Functions of Immune Effector Cells Through Epigenetic Modifications.
    Li Y; Wu Y; Hu Y
    Front Immunol; 2021; 12():641883. PubMed ID: 33927716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Extracellular NADome Modulates Immune Responses.
    Audrito V; Messana VG; Brandimarte L; Deaglio S
    Front Immunol; 2021; 12():704779. PubMed ID: 34421911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirtuins and the Metabolic Hurdles in Cancer.
    German NJ; Haigis MC
    Curr Biol; 2015 Jun; 25(13):R569-83. PubMed ID: 26126285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy.
    Huang L; Xu H; Peng G
    Cell Mol Immunol; 2018 May; 15(5):428-437. PubMed ID: 29553135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders.
    Srivastava S
    Clin Transl Med; 2016 Dec; 5(1):25. PubMed ID: 27465020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes.
    Liu L; Su X; Quinn WJ; Hui S; Krukenberg K; Frederick DW; Redpath P; Zhan L; Chellappa K; White E; Migaud M; Mitchison TJ; Baur JA; Rabinowitz JD
    Cell Metab; 2018 May; 27(5):1067-1080.e5. PubMed ID: 29685734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Interplay Between Innate Lymphoid Cells and the Tumor Microenvironment.
    Ducimetière L; Vermeer M; Tugues S
    Front Immunol; 2019; 10():2895. PubMed ID: 31921156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotinamide adenine dinucleotide homeostasis and signalling in heart disease: Pathophysiological implications and therapeutic potential.
    Mericskay M
    Arch Cardiovasc Dis; 2016 Mar; 109(3):207-15. PubMed ID: 26707577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD+-consuming enzymes in immune defense against viral infection.
    Shang J; Smith MR; Anmangandla A; Lin H
    Biochem J; 2021 Dec; 478(23):4071-4092. PubMed ID: 34871367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor Microenvironment: A Metabolic Player that Shapes the Immune Response.
    Cassim S; Pouyssegur J
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31881671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field.
    Gentric G; Mieulet V; Mechta-Grigoriou F
    Antioxid Redox Signal; 2017 Mar; 26(9):462-485. PubMed ID: 27228792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunometabolism: A new target for improving cancer immunotherapy.
    Guo C; Chen S; Liu W; Ma Y; Li J; Fisher PB; Fang X; Wang XY
    Adv Cancer Res; 2019; 143():195-253. PubMed ID: 31202359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of AhR in transcriptional regulation of immune cell development and function.
    Trikha P; Lee DA
    Biochim Biophys Acta Rev Cancer; 2020 Jan; 1873(1):188335. PubMed ID: 31816350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways.
    Snaebjornsson MT; Schulze A
    Exp Mol Med; 2018 Apr; 50(4):1-16. PubMed ID: 29657328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.