These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 31403183)
41. Applications of small molecules in modulating productivity and product quality of recombinant proteins produced using cell cultures. Xu P; Xu S; He C; Khetan A Biotechnol Adv; 2020 Nov; 43():107577. PubMed ID: 32540474 [TBL] [Abstract][Full Text] [Related]
42. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908 [TBL] [Abstract][Full Text] [Related]
43. Resveratrol addition to Chinese hamster ovary cell culture media: The effect on cell growth, monoclonal antibody synthesis, and its chemical modification. Toronjo-Urquiza L; Acosta-Martin AE; James DC; Nagy T; Falconer RJ Biotechnol Prog; 2020 May; 36(3):e2940. PubMed ID: 31742929 [TBL] [Abstract][Full Text] [Related]
44. Chemically defined media modifications to lower tryptophan oxidation of biopharmaceuticals. Hazeltine LB; Knueven KM; Zhang Y; Lian Z; Olson DJ; Ouyang A Biotechnol Prog; 2016; 32(1):178-88. PubMed ID: 26560440 [TBL] [Abstract][Full Text] [Related]
45. Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines. Xu P; Dai XP; Graf E; Martel R; Russell R Biotechnol Prog; 2014; 30(6):1457-68. PubMed ID: 25079388 [TBL] [Abstract][Full Text] [Related]
46. Control of amino acid transport into Chinese hamster ovary cells. Geoghegan D; Arnall C; Hatton D; Noble-Longster J; Sellick C; Senussi T; James DC Biotechnol Bioeng; 2018 Dec; 115(12):2908-2929. PubMed ID: 29987891 [TBL] [Abstract][Full Text] [Related]
47. Modeling the Effect of Amino Acids and Copper on Monoclonal Antibody Productivity and Glycosylation: A Modular Approach. Luo Y; Lovelett RJ; Price JV; Radhakrishnan D; Barnthouse K; Hu P; Schaefer E; Cunningham J; Lee KH; Shivappa RB; Ogunnaike BA Biotechnol J; 2021 Feb; 16(2):e2000261. PubMed ID: 32875683 [TBL] [Abstract][Full Text] [Related]
48. Characterization of mammalian cell culture raw materials by combining spectroscopy and chemometrics. Trunfio N; Lee H; Starkey J; Agarabi C; Liu J; Yoon S Biotechnol Prog; 2017 Jul; 33(4):1127-1138. PubMed ID: 28393480 [TBL] [Abstract][Full Text] [Related]
49. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Chevallier V; Andersen MR; Malphettes L Biotechnol Bioeng; 2020 Apr; 117(4):1172-1186. PubMed ID: 31814104 [TBL] [Abstract][Full Text] [Related]
50. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect. Buchsteiner M; Quek LE; Gray P; Nielsen LK Biotechnol Bioeng; 2018 Sep; 115(9):2315-2327. PubMed ID: 29704441 [TBL] [Abstract][Full Text] [Related]
51. Changes in the quality of antibodies produced by Chinese hamster ovary cells during the death phase of cell culture. Kaneko Y; Sato R; Aoyagi H J Biosci Bioeng; 2010 Mar; 109(3):281-7. PubMed ID: 20159578 [TBL] [Abstract][Full Text] [Related]
52. Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells. Yin B; Wang Q; Chung CY; Ren X; Bhattacharya R; Yarema KJ; Betenbaugh MJ Biotechnol Bioeng; 2018 Jun; 115(6):1531-1541. PubMed ID: 29427449 [TBL] [Abstract][Full Text] [Related]
53. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Gawlitzek M; Estacio M; Fürch T; Kiss R Biotechnol Bioeng; 2009 Aug; 103(6):1164-75. PubMed ID: 19418565 [TBL] [Abstract][Full Text] [Related]
54. Cell culture media supplementation of uncommonly used sugars sucrose and tagatose for the targeted shifting of protein glycosylation profiles of recombinant protein therapeutics. Hossler P; McDermott S; Racicot C; Chumsae C; Raharimampionona H; Zhou Y; Ouellette D; Matuck J; Correia I; Fann J; Li J Biotechnol Prog; 2014; 30(6):1419-31. PubMed ID: 25132658 [TBL] [Abstract][Full Text] [Related]
55. Impact of iron raw materials and their impurities on CHO metabolism and recombinant protein product quality. Weiss CH; Merkel C; Zimmer A Biotechnol Prog; 2021 Jul; 37(4):e3148. PubMed ID: 33742789 [TBL] [Abstract][Full Text] [Related]
56. Nickel and cobalt affect galactosylation of recombinant IgG expressed in CHO cells. Prabhu A; Gadgil M Biometals; 2019 Feb; 32(1):11-19. PubMed ID: 30327978 [TBL] [Abstract][Full Text] [Related]
57. Regulation of cell growth and apoptosis through lactate dehydrogenase C over-expression in Chinese hamster ovary cells. Fu T; Zhang C; Jing Y; Jiang C; Li Z; Wang S; Ma K; Zhang D; Hou S; Dai J; Kou G; Wang H Appl Microbiol Biotechnol; 2016 Jun; 100(11):5007-16. PubMed ID: 26841889 [TBL] [Abstract][Full Text] [Related]
58. Hyperosmotic stimulus study discloses benefits in ATP supply and reveals miRNA/mRNA targets to improve recombinant protein production of CHO cells. Pfizenmaier J; Junghans L; Teleki A; Takors R Biotechnol J; 2016 Aug; 11(8):1037-47. PubMed ID: 27214792 [TBL] [Abstract][Full Text] [Related]
59. Combined multivariate statistical and flux balance analyses uncover media bottlenecks to the growth and productivity of Chinese hamster ovary cell cultures. Yeo HC; Park SY; Tan T; Ng SK; Lakshmanan M; Lee DY Biotechnol Bioeng; 2022 Jul; 119(7):1740-1754. PubMed ID: 35435243 [TBL] [Abstract][Full Text] [Related]
60. Combinatorial engineering of ldh-a and bcl-2 for reducing lactate production and improving cell growth in dihydrofolate reductase-deficient Chinese hamster ovary cells. Jeon MK; Yu DY; Lee GM Appl Microbiol Biotechnol; 2011 Nov; 92(4):779-90. PubMed ID: 21792592 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]