These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 31403227)
21. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. Wang Z; Huang Y; Sun J; Huang Y; Hu H; Jiang R; Gai W; Li G; Zhi C ACS Appl Mater Interfaces; 2016 Sep; 8(37):24837-43. PubMed ID: 27558025 [TBL] [Abstract][Full Text] [Related]
22. Highly Stretchable Sheath-Core Yarns for Multifunctional Wearable Electronics. Cai G; Hao B; Luo L; Deng Z; Zhang R; Ran J; Tang X; Cheng D; Bi S; Wang X; Dai K ACS Appl Mater Interfaces; 2020 Jul; 12(26):29717-29727. PubMed ID: 32517469 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods. Watanabe T; Yamazaki S; Yamashita S; Inaba T; Muroga S; Morimoto T; Kobashi K; Okazaki T Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214922 [TBL] [Abstract][Full Text] [Related]
24. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Lima MD; Li N; Jung de Andrade M; Fang S; Oh J; Spinks GM; Kozlov ME; Haines CS; Suh D; Foroughi J; Kim SJ; Chen Y; Ware T; Shin MK; Machado LD; Fonseca AF; Madden JD; Voit WE; Galvão DS; Baughman RH Science; 2012 Nov; 338(6109):928-32. PubMed ID: 23161994 [TBL] [Abstract][Full Text] [Related]
25. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics. Su F; Miao M Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526 [TBL] [Abstract][Full Text] [Related]
26. Enhanced Hydro-Actuation and Capacitance of Electrochemically Inner-Bundle-Activated Carbon Nanotube Yarns. Son W; Lee JM; Chun S; Yu S; Noh JH; Kim HW; Cho SB; Kim SJ; Choi C ACS Appl Mater Interfaces; 2023 Mar; 15(10):13484-13494. PubMed ID: 36855828 [TBL] [Abstract][Full Text] [Related]
27. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. Busolo T; Szewczyk PK; Nair M; Stachewicz U; Kar-Narayan S ACS Appl Mater Interfaces; 2021 Apr; 13(14):16876-16886. PubMed ID: 33783199 [TBL] [Abstract][Full Text] [Related]
28. Strong and Robust Electrochemical Artificial Muscles by Ionic-Liquid-in-Nanofiber-Sheathed Carbon Nanotube Yarns. Ren M; Qiao J; Wang Y; Wu K; Dong L; Shen X; Zhang H; Yang W; Wu Y; Yong Z; Chen W; Zhang Y; Di J; Li Q Small; 2021 Feb; 17(5):e2006181. PubMed ID: 33432780 [TBL] [Abstract][Full Text] [Related]
30. In situ multi-dimensional actuation measurement method for tensile actuation of paraffin-infiltrated multi-wall carbon nanotube yarns. Dang DX; Truong TK; Lim SC; Suh D Rev Sci Instrum; 2017 Jul; 88(7):075001. PubMed ID: 28764550 [TBL] [Abstract][Full Text] [Related]
31. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors. Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734 [TBL] [Abstract][Full Text] [Related]
32. Self-Powered Coiled Carbon-Nanotube Yarn Sensor for Gastric Electronics. Jang Y; Kim SM; Kim KJ; Sim HJ; Kim BJ; Park JW; Baughman RH; Ruhparwar A; Kim SJ ACS Sens; 2019 Nov; 4(11):2893-2899. PubMed ID: 31525897 [TBL] [Abstract][Full Text] [Related]
33. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Randeniya LK; Bendavid A; Martin PJ; Tran CD Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629 [TBL] [Abstract][Full Text] [Related]
34. Spatiotemporal characteristics of neural activity in tibial nerves with carbon nanotube yarn electrodes. Yu X; Su JY; Guo JY; Zhang XH; Li RH; Chai XY; Chen Y; Zhang DG; Wang JG; Sui XH; Durand DM J Neurosci Methods; 2019 Dec; 328():108450. PubMed ID: 31577919 [TBL] [Abstract][Full Text] [Related]
35. Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials. Chen Y; Xu B; Gong J; Wen J; Hua T; Kan CW; Deng J ACS Appl Mater Interfaces; 2019 Jan; 11(2):2120-2129. PubMed ID: 30571093 [TBL] [Abstract][Full Text] [Related]
36. Flexible electrochromic materials based on CNT/PDA hybrids. Varghese Hansen R; Yang J; Zheng L Adv Colloid Interface Sci; 2018 Aug; 258():21-35. PubMed ID: 30072030 [TBL] [Abstract][Full Text] [Related]
37. Self-plied and twist-stable carbon nanotube yarn artificial muscles driven by organic solvent adsorption. Jin K; Zhang S; Zhou S; Qiao J; Song Y; Di J; Zhang D; Li Q Nanoscale; 2018 May; 10(17):8180-8186. PubMed ID: 29676416 [TBL] [Abstract][Full Text] [Related]
38. New twist on artificial muscles. Haines CS; Li N; Spinks GM; Aliev AE; Di J; Baughman RH Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11709-11716. PubMed ID: 27671626 [TBL] [Abstract][Full Text] [Related]
39. Highly twisted double-helix carbon nanotube yarns. Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799 [TBL] [Abstract][Full Text] [Related]
40. Single-step process to improve the mechanical properties of carbon nanotube yarn. Evora MC; Lu X; Hiremath N; Kang NG; Hong K; Uribe R; Bhat G; Mays J Beilstein J Nanotechnol; 2018; 9():545-554. PubMed ID: 29527431 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]