These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31403416)

  • 1. Estimation of Rotation Gain Thresholds Considering FOV, Gender, and Distractors.
    Williams NL; Peck TC
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3158-3168. PubMed ID: 31403416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking.
    Schmitz P; Hildebrandt J; Valdez AC; Kobbelt L; Ziefle M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1623-1632. PubMed ID: 29543179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection Thresholds for Rotation and Translation Gains in 360° Video-Based Telepresence Systems.
    Zhang J; Langbehn E; Krupke D; Katzakis N; Steinicke F
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1671-1680. PubMed ID: 29543182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shrinking Circles: Adaptation to Increased Curvature Gain in Redirected Walking.
    Bolling L; Stein N; Steinicke F; Lappe M
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):2032-2039. PubMed ID: 30794515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M
    IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BiRD: Using Bidirectional Rotation Gain Differences to Redirect Users during Back-and-forth Head Turns in Walking.
    Xu SZ; Chen FXY; Gong R; Zhang FL; Zhang SH
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2693-2702. PubMed ID: 38437103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Steering Algorithm for Redirected Walking Using Reinforcement Learning.
    Strauss RR; Ramanujan R; Becker A; Peck TC
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1955-1963. PubMed ID: 32078549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of reorientation techniques and distractors for walking in large virtual environments.
    Peck TC; Fuchs H; Whitton MC
    IEEE Trans Vis Comput Graph; 2009; 15(3):383-94. PubMed ID: 19282546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Rotation Gains Within and Beyond Perceptual Limitations for Seated VR.
    Wang C; Zhang SH; Zhang Y; Zollmann S; Hu SM
    IEEE Trans Vis Comput Graph; 2023 Jul; 29(7):3380-3391. PubMed ID: 35294351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.
    Nilsson NC; Serafin S; Nordahl R
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):569-78. PubMed ID: 24650984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-User Redirected Walking and Resetting Using Artificial Potential Fields.
    Bachmann ER; Hodgson E; Hoffbauer C; Messinger J
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):2022-2031. PubMed ID: 30794513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual capture of gait during redirected walking.
    Rothacher Y; Nguyen A; Lenggenhager B; Kunz A; Brugger P
    Sci Rep; 2018 Dec; 8(1):17974. PubMed ID: 30568182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of Gait Parameters of Younger and Older Adults During (Non-)Isometric Virtual Walking.
    Janeh O; Bruder G; Steinicke F; Gulberti A; Poetter-Nerger M
    IEEE Trans Vis Comput Graph; 2018 Oct; 24(10):2663-2674. PubMed ID: 29990158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive Resource Demands of Redirected Walking.
    Bruder G; Lubas P; Steinicke F
    IEEE Trans Vis Comput Graph; 2015 Apr; 21(4):539-44. PubMed ID: 26357104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset.
    Martelli D; Xia B; Prado A; Agrawal SK
    Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What is the minimum field of view required for efficient navigation?
    Hassan SE; Hicks JC; Lei H; Turano KA
    Vision Res; 2007 Jul; 47(16):2115-23. PubMed ID: 17561227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining Rotation Gain in CAVE-like Virtual Environments.
    Freitag S; Weyers B; Kuhlen TW
    IEEE Trans Vis Comput Graph; 2016 Apr; 22(4):1462-71. PubMed ID: 26780809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of characteristics of image quality in an immersive environment.
    Duh HB; Lin JJ; Kenyon RV; Parker DE; Furness TA
    Presence (Camb); 2002 Jun; 11(3):324-32. PubMed ID: 12238514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaning-Based Interfaces Improve Simultaneous Locomotion and Object Interaction in VR Compared to the Handheld Controller.
    Hashemian AM; Adhikari A; Aguilar IA; Kruijff E; Heyde MV; Riecke BE
    IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):4665-4682. PubMed ID: 37200130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Losing sight of the bigger picture: peripheral field loss compresses representations of space.
    Fortenbaugh FC; Hicks JC; Hao L; Turano KA
    Vision Res; 2007 Sep; 47(19):2506-20. PubMed ID: 17692884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.