BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31403422)

  • 1. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FocusAR: Auto-focus Augmented Reality Eyeglasses for both Real World and Virtual Imagery.
    Chakravarthula P; Dunn D; Aksit K; Fuchs H
    IEEE Trans Vis Comput Graph; 2018 Nov; 24(11):2906-2916. PubMed ID: 30207958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix optics representation and imaging analysis of a light-field near-eye display.
    Yao C; Cheng D; Wang Y
    Opt Express; 2020 Dec; 28(26):39976-39997. PubMed ID: 33379535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate measurement of virtual image distance for near-eye displays based on auto-focusing.
    Xu H; Tabata S; Liang H; Wang L; Ishikawa M
    Appl Opt; 2022 Oct; 61(30):9093-9098. PubMed ID: 36607038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Eye Vergence and Accommodation on Interactions with Content on an AR Magic-lens Display and its Surroundings.
    Lugtenberg G; Copic Pucihar K; Kljun M; Sawabe T; Fujimoto Y; Kanbara M; Kato H
    IEEE Trans Vis Comput Graph; 2024 May; PP():. PubMed ID: 38771678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements.
    Chen S; Lin J; He Z; Li Y; Su Y; Wu ST
    Opt Express; 2022 Sep; 30(19):34655-34664. PubMed ID: 36242473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
    Gaffary Y; Le Gouis B; Marchal M; Argelaguet F; Arnaldi B; Lecuyer A
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2372-2377. PubMed ID: 28809699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-color retinal-projection near-eye display using a multiplexing-encoding holographic method.
    Song W; Li X; Zheng Y; Liu Y; Wang Y
    Opt Express; 2021 Mar; 29(6):8098-8107. PubMed ID: 33820262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of viewing distance and age on the performance and symptoms in a visual search task in augmented reality.
    Huang YY; Menozzi M
    Appl Ergon; 2022 Jul; 102():103746. PubMed ID: 35290897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric Head-Mounted Display With Locally Adaptive Focal Blocks.
    Yoo D; Lee S; Jo Y; Cho J; Choi S; Lee B
    IEEE Trans Vis Comput Graph; 2022 Feb; 28(2):1415-1427. PubMed ID: 32746283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Extended Depth-at-Field Volumetric Near-Eye Augmented Reality Display.
    Rathinavel K; Wang H; Blate A; Fuchs H
    IEEE Trans Vis Comput Graph; 2018 Nov; 24(11):2857-2866. PubMed ID: 30207960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses.
    Zhan T; Lee YH; Wu ST
    Opt Express; 2018 Feb; 26(4):4863-4872. PubMed ID: 29475331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid crystal lens set in augmented reality systems and virtual reality systems for rapidly varifocal images and vision correction.
    Lin YH; Huang TW; Huang HH; Wang YJ
    Opt Express; 2022 Jun; 30(13):22768-22778. PubMed ID: 36224967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using biomechanics to investigate the effect of VR on eye vergence system.
    Iskander J; Hossny M; Nahavandi S
    Appl Ergon; 2019 Nov; 81():102883. PubMed ID: 31422246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaze-Dependent Simulation of Light Perception in Virtual Reality.
    Luidolt LR; Wimmer M; Krosl K
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3557-3567. PubMed ID: 32941149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metalens Eyepiece for 3D Holographic Near-Eye Display.
    Wang C; Yu Z; Zhang Q; Sun Y; Tao C; Wu F; Zheng Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waveguide-type see-through dual focus near-eye display with a polarization grating.
    Shin KS; Choi MH; Jang J; Park JH
    Opt Express; 2021 Nov; 29(24):40294-40309. PubMed ID: 34809374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light Attenuation Display: Subtractive See-Through Near-Eye Display via Spatial Color Filtering.
    Itoh Y; Langlotz T; Iwai D; Kiyokawa K; Amano T
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1951-1960. PubMed ID: 30946657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomographic waveguide-based augmented reality display.
    Zhao N; Xiao J; Weng P; Zhang H
    Opt Express; 2024 May; 32(11):18692-18699. PubMed ID: 38859019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.