These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31403422)

  • 1. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FocusAR: Auto-focus Augmented Reality Eyeglasses for both Real World and Virtual Imagery.
    Chakravarthula P; Dunn D; Aksit K; Fuchs H
    IEEE Trans Vis Comput Graph; 2018 Nov; 24(11):2906-2916. PubMed ID: 30207958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix optics representation and imaging analysis of a light-field near-eye display.
    Yao C; Cheng D; Wang Y
    Opt Express; 2020 Dec; 28(26):39976-39997. PubMed ID: 33379535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate measurement of virtual image distance for near-eye displays based on auto-focusing.
    Xu H; Tabata S; Liang H; Wang L; Ishikawa M
    Appl Opt; 2022 Oct; 61(30):9093-9098. PubMed ID: 36607038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Eye Vergence and Accommodation on Interactions with Content on an AR Magic-lens Display and its Surroundings.
    Lugtenberg G; Copic Pucihar K; Kljun M; Sawabe T; Fujimoto Y; Kanbara M; Kato H
    IEEE Trans Vis Comput Graph; 2024 May; PP():. PubMed ID: 38771678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements.
    Chen S; Lin J; He Z; Li Y; Su Y; Wu ST
    Opt Express; 2022 Sep; 30(19):34655-34664. PubMed ID: 36242473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
    Gaffary Y; Le Gouis B; Marchal M; Argelaguet F; Arnaldi B; Lecuyer A
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2372-2377. PubMed ID: 28809699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-color retinal-projection near-eye display using a multiplexing-encoding holographic method.
    Song W; Li X; Zheng Y; Liu Y; Wang Y
    Opt Express; 2021 Mar; 29(6):8098-8107. PubMed ID: 33820262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of viewing distance and age on the performance and symptoms in a visual search task in augmented reality.
    Huang YY; Menozzi M
    Appl Ergon; 2022 Jul; 102():103746. PubMed ID: 35290897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric Head-Mounted Display With Locally Adaptive Focal Blocks.
    Yoo D; Lee S; Jo Y; Cho J; Choi S; Lee B
    IEEE Trans Vis Comput Graph; 2022 Feb; 28(2):1415-1427. PubMed ID: 32746283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Extended Depth-at-Field Volumetric Near-Eye Augmented Reality Display.
    Rathinavel K; Wang H; Blate A; Fuchs H
    IEEE Trans Vis Comput Graph; 2018 Nov; 24(11):2857-2866. PubMed ID: 30207960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses.
    Zhan T; Lee YH; Wu ST
    Opt Express; 2018 Feb; 26(4):4863-4872. PubMed ID: 29475331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid crystal lens set in augmented reality systems and virtual reality systems for rapidly varifocal images and vision correction.
    Lin YH; Huang TW; Huang HH; Wang YJ
    Opt Express; 2022 Jun; 30(13):22768-22778. PubMed ID: 36224967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using biomechanics to investigate the effect of VR on eye vergence system.
    Iskander J; Hossny M; Nahavandi S
    Appl Ergon; 2019 Nov; 81():102883. PubMed ID: 31422246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaze-Dependent Simulation of Light Perception in Virtual Reality.
    Luidolt LR; Wimmer M; Krosl K
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3557-3567. PubMed ID: 32941149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metalens Eyepiece for 3D Holographic Near-Eye Display.
    Wang C; Yu Z; Zhang Q; Sun Y; Tao C; Wu F; Zheng Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waveguide-type see-through dual focus near-eye display with a polarization grating.
    Shin KS; Choi MH; Jang J; Park JH
    Opt Express; 2021 Nov; 29(24):40294-40309. PubMed ID: 34809374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light Attenuation Display: Subtractive See-Through Near-Eye Display via Spatial Color Filtering.
    Itoh Y; Langlotz T; Iwai D; Kiyokawa K; Amano T
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1951-1960. PubMed ID: 30946657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomographic waveguide-based augmented reality display.
    Zhao N; Xiao J; Weng P; Zhang H
    Opt Express; 2024 May; 32(11):18692-18699. PubMed ID: 38859019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.