These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31403839)

  • 21. Assessing drivers' response during automated driver support system failures with non-driving tasks.
    Shen S; Neyens DM
    J Safety Res; 2017 Jun; 61():149-155. PubMed ID: 28454860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noncritical State Transitions During Conditionally Automated Driving on German Freeways: Effects of Non-Driving Related Tasks on Takeover Time and Takeover Quality.
    Naujoks F; Purucker C; Wiedemann K; Marberger C
    Hum Factors; 2019 Jun; 61(4):596-613. PubMed ID: 30689440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Driver distraction and its effects on partially automated driving performance: A driving simulator study among young-experienced drivers.
    Zangi N; Srour-Zreik R; Ridel D; Chasidim H; Borowsky A
    Accid Anal Prev; 2022 Mar; 166():106565. PubMed ID: 35032704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control task substitution in semiautomated driving: does it matter what aspects are automated?
    Carsten O; Lai FC; Barnard Y; Jamson AH; Merat N
    Hum Factors; 2012 Oct; 54(5):747-61. PubMed ID: 23156620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of scheduled manual driving on drowsiness and response to take over request: A simulator study towards understanding drivers in automated driving.
    Wu Y; Kihara K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    Accid Anal Prev; 2019 Mar; 124():202-209. PubMed ID: 30665055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly automated driving, secondary task performance, and driver state.
    Merat N; Jamson AH; Lai FC; Carsten O
    Hum Factors; 2012 Oct; 54(5):762-71. PubMed ID: 23156621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of different takeover request interfaces on takeover behavior and performance during conditionally automated driving.
    Ou YK; Huang WX; Fang CW
    Accid Anal Prev; 2021 Nov; 162():106425. PubMed ID: 34601181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Introduction matters: Manipulating trust in automation and reliance in automated driving.
    Körber M; Baseler E; Bengler K
    Appl Ergon; 2018 Jan; 66():18-31. PubMed ID: 28958427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Promote or inhibit: An inverted U-shaped effect of workload on driver takeover performance.
    Ma S; Zhang W; Yang Z; Kang C; Wu C; Chai C; Shi J; Li H
    Traffic Inj Prev; 2020; 21(7):482-487. PubMed ID: 32822218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Take-over again: Investigating multimodal and directional TORs to get the driver back into the loop.
    Petermeijer S; Bazilinskyy P; Bengler K; de Winter J
    Appl Ergon; 2017 Jul; 62():204-215. PubMed ID: 28411731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In a heart beat: Using driver's physiological changes to determine the quality of a takeover in highly automated vehicles.
    Alrefaie MT; Summerskill S; Jackon TW
    Accid Anal Prev; 2019 Oct; 131():180-190. PubMed ID: 31302486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Driver Visual Attention Before and After Take-Over Requests During Automated Driving on Public Roads.
    Pipkorn L; Dozza M; Tivesten E
    Hum Factors; 2024 Feb; 66(2):336-347. PubMed ID: 35708240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of non-driving related tasks while operating automated driving systems (ADS): A systematic review.
    Hungund AP; Kumar Pradhan A
    Accid Anal Prev; 2023 Aug; 188():107076. PubMed ID: 37150132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supervising the self-driving car: Situation awareness and fatigue during highly automated driving.
    McKerral A; Pammer K; Gauld C
    Accid Anal Prev; 2023 Jul; 187():107068. PubMed ID: 37075544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Non-Driving Related Task Modalities on Takeover Performance in Highly Automated Driving.
    Wandtner B; Schömig N; Schmidt G
    Hum Factors; 2018 Sep; 60(6):870-881. PubMed ID: 29617161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance of an Additional Task During Level 2 Automated Driving: An On-Road Study Comparing Drivers With and Without Experience With Partial Automation.
    Solís-Marcos I; Ahlström C; Kircher K
    Hum Factors; 2018 Sep; 60(6):778-792. PubMed ID: 29791201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Takeover Time in Highly Automated Vehicles: Noncritical Transitions to and From Manual Control.
    Eriksson A; Stanton NA
    Hum Factors; 2017 Jun; 59(4):689-705. PubMed ID: 28124573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving.
    Zeeb K; Buchner A; Schrauf M
    Accid Anal Prev; 2016 Jul; 92():230-9. PubMed ID: 27107472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of cognitive load on drivers' State and task performance during automated driving: Introducing a novel method for determining stabilisation time following take-over of control.
    Melnicuk V; Thompson S; Jennings P; Birrell S
    Accid Anal Prev; 2021 Mar; 151():105967. PubMed ID: 33444868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Driving performance at lateral system limits during partially automated driving.
    Naujoks F; Purucker C; Wiedemann K; Neukum A; Wolter S; Steiger R
    Accid Anal Prev; 2017 Nov; 108():147-162. PubMed ID: 28886450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.