These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 31404255)
1. Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain-Computer Interfaces. Ogino M; Kanoga S; Muto M; Mitsukura Y Front Hum Neurosci; 2019; 13():250. PubMed ID: 31404255 [TBL] [Abstract][Full Text] [Related]
2. Design of auditory P300-based brain-computer interfaces with a single auditory channel and no visual support. Choi YJ; Kwon OS; Kim SP Cogn Neurodyn; 2023 Dec; 17(6):1401-1416. PubMed ID: 37974580 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous multiple-stimulus auditory brain-computer interface with semi-supervised learning and prior probability distribution tuning. Ogino M; Hamada N; Mitsukura Y J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317357 [No Abstract] [Full Text] [Related]
4. A Novel 9-Class Auditory ERP Paradigm Driving a Predictive Text Entry System. Höhne J; Schreuder M; Blankertz B; Tangermann M Front Neurosci; 2011; 5():99. PubMed ID: 21909321 [TBL] [Abstract][Full Text] [Related]
5. Event-Related Potential-Based Brain-Computer Interface Using the Thai Vowels' and Numerals' Auditory Stimulus Pattern. Borirakarawin M; Punsawad Y Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957419 [TBL] [Abstract][Full Text] [Related]
6. Novel electrotactile brain-computer interface with somatosensory event-related potential based control. Savić AM; Novičić M; Ðorđević O; Konstantinović L; Miler-Jerković V Front Hum Neurosci; 2023; 17():1096814. PubMed ID: 37033908 [TBL] [Abstract][Full Text] [Related]
7. Prediction of auditory and visual p300 brain-computer interface aptitude. Halder S; Hammer EM; Kleih SC; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A PLoS One; 2013; 8(2):e53513. PubMed ID: 23457444 [TBL] [Abstract][Full Text] [Related]
8. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Kaufmann T; Holz EM; Kübler A Front Neurosci; 2013; 7():129. PubMed ID: 23898236 [TBL] [Abstract][Full Text] [Related]
9. User-centered design in brain-computer interfaces-a case study. Schreuder M; Riccio A; Risetti M; Dähne S; Ramsay A; Williamson J; Mattia D; Tangermann M Artif Intell Med; 2013 Oct; 59(2):71-80. PubMed ID: 24076341 [TBL] [Abstract][Full Text] [Related]
10. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context. Halder S; Leinfelder T; Schulz SM; Kübler A Hum Brain Mapp; 2019 Jun; 40(8):2399-2412. PubMed ID: 30693612 [TBL] [Abstract][Full Text] [Related]
11. Brain-computer interfaces for communication and control. Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038 [TBL] [Abstract][Full Text] [Related]
12. An auditory brain-computer interface using virtual sound field. Gao H; Ouyang M; Zhang D; Hong B Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4568-71. PubMed ID: 22255354 [TBL] [Abstract][Full Text] [Related]
13. How stimulation speed affects Event-Related Potentials and BCI performance. Höhne J; Tangermann M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1802-5. PubMed ID: 23366261 [TBL] [Abstract][Full Text] [Related]
14. Effects of Emotional Stimulations on the Online Operation of a P300-Based Brain-Computer Interface. Kim M; Kim J; Heo D; Choi Y; Lee T; Kim SP Front Hum Neurosci; 2021; 15():612777. PubMed ID: 33767615 [TBL] [Abstract][Full Text] [Related]
15. Estimating the intended sound direction of the user: toward an auditory brain-computer interface using out-of-head sound localization. Nambu I; Ebisawa M; Kogure M; Yano S; Hokari H; Wada Y PLoS One; 2013; 8(2):e57174. PubMed ID: 23437338 [TBL] [Abstract][Full Text] [Related]
16. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses. Baek HJ; Kim HS; Heo J; Lim YG; Park KS J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913 [TBL] [Abstract][Full Text] [Related]
17. The challenge of controlling an auditory BCI in the case of severe motor disability. Séguin P; Maby E; Fouillen M; Otman A; Luauté J; Giraux P; Morlet D; Mattout J J Neuroeng Rehabil; 2024 Jan; 21(1):9. PubMed ID: 38238759 [TBL] [Abstract][Full Text] [Related]
18. EEG-based brain-computer interface methods with the aim of rehabilitating advanced stage ALS patients. Pirasteh A; Shamseini Ghiyasvand M; Pouladian M Disabil Rehabil Assist Technol; 2024 Nov; 19(8):3183-3193. PubMed ID: 38400897 [TBL] [Abstract][Full Text] [Related]
19. Visuo-auditory stimuli with semantic, temporal and spatial congruence for a P300-based BCI: An exploratory test with an ALS patient in a completely locked-in state. Pires G; Barbosa S; Nunes UJ; Gonçalves E J Neurosci Methods; 2022 Sep; 379():109661. PubMed ID: 35817307 [TBL] [Abstract][Full Text] [Related]
20. Circadian course of the P300 ERP in patients with amyotrophic lateral sclerosis - implications for brain-computer interfaces (BCI). Erlbeck H; Mochty U; Kübler A; Real RG BMC Neurol; 2017 Jan; 17(1):3. PubMed ID: 28061886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]