BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31404485)

  • 1. Blend scaffolds with polyaspartamide/polyester structure fabricated via TIPS and their RGDC functionalization to promote osteoblast adhesion and proliferation.
    Palumbo FS; Bongiovì F; Carfì Pavia F; Vitrano I; La Carrubba V; Pitarresi G; Brucato V; Giammona G
    J Biomed Mater Res A; 2019 Dec; 107(12):2726-2735. PubMed ID: 31404485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of physical and biological properties of a composite PLLA and polyaspartamide derivative obtained via thermally induced phase separation (TIPS) technique.
    Carfì Pavia F; Palumbo FS; La Carrubba V; Bongiovì F; Brucato V; Pitarresi G; Giammona G
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():561-569. PubMed ID: 27287155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterization and foaming of PHEA-PLLA, a new graft copolymer for biomedical engineering.
    Carfì Pavia F; La Carrubba V; Brucato V; Palumbo FS; Giammona G
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():301-8. PubMed ID: 24907764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of poly (ethylenimine) modified poly (l-lactic acid) nanofibrous scaffolds.
    Guo R; Chen S; Xiao X
    J Biomater Sci Polym Ed; 2019 Nov; 30(16):1523-1541. PubMed ID: 31359828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells.
    Idris SB; Arvidson K; Plikk P; Ibrahim S; Finne-Wistrand A; Albertsson AC; Bolstad AI; Mustafa K
    J Biomed Mater Res A; 2010 Aug; 94(2):631-9. PubMed ID: 20205238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds.
    Xiao G; Yin H; Xu W; Lu Y
    J Biomater Sci Polym Ed; 2016 Oct; 27(14):1462-75. PubMed ID: 27398630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyaspartamide-polylactide electrospun scaffolds for potential topical release of Ibuprofen.
    Pitarresi G; Fiorica C; Palumbo FS; Calascibetta F; Giammona G
    J Biomed Mater Res A; 2012 Jun; 100(6):1565-72. PubMed ID: 22447357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D and Porous RGDC-Functionalized Polyester-Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells.
    Yassin MA; Fuoco T; Mohamed-Ahmed S; Mustafa K; Finne-Wistrand A
    Macromol Biosci; 2019 Jun; 19(6):e1900049. PubMed ID: 31050389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of modified nanofibrous poly(L-lactic acid) scaffolds by thermally induced phase separation technique and aminolysis for promoting cyctocompatibility.
    Chen S; He Z; Xu G; Xiao X
    J Biomater Sci Polym Ed; 2016 Jul; 27(10):1058-68. PubMed ID: 27095503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells.
    Ge M; Xue L; Nie T; Ma H; Zhang J
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1685-1697. PubMed ID: 27569555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.
    Sadiasa A; Nguyen TH; Lee BT
    J Biomater Sci Polym Ed; 2014; 25(2):150-67. PubMed ID: 24138179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Pore Size Distribution and l-Lysine Modified Apatite Whiskers (HAP) on Osteoblasts Response in PLLA/HAP Foam Scaffolds Obtained in the Thermally Induced Phase Separation Process.
    Szustakiewicz K; Włodarczyk M; Gazińska M; Rudnicka K; Płociński P; Szymczyk-Ziółkowska P; Ziółkowski G; Biernat M; Sieja K; Grzymajło M; Jóźwiak P; Michlewska S; Trochimczuk AW
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering.
    Carfì Pavia F; Conoscenti G; Greco S; La Carrubba V; Ghersi G; Brucato V
    Int J Biol Macromol; 2018 Nov; 119():945-953. PubMed ID: 30081128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of PLLA-chitosan hybrid scaffolds with improved cell compatibility.
    Jiao Y; Liu Z; Zhou C
    J Biomed Mater Res A; 2007 Mar; 80(4):820-5. PubMed ID: 17058212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures.
    Lou T; Wang X; Yan X; Miao Y; Long YZ; Yin HL; Sun B; Song G
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():341-345. PubMed ID: 27127062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development.
    Mota C; Wang SY; Puppi D; Gazzarri M; Migone C; Chiellini F; Chen GQ; Chiellini E
    J Tissue Eng Regen Med; 2017 Jan; 11(1):175-186. PubMed ID: 24889107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RGD-functionalization of PLA/starch scaffolds obtained by electrospinning and evaluated in vitro for potential bone regeneration.
    Gutiérrez-Sánchez M; Escobar-Barrios VA; Pozos-Guillén A; Escobar-García DM
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():798-806. PubMed ID: 30606593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.