BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31404526)

  • 1. Systematic evaluation of species-independent serum pre-fractionation strategies revealed cost-effective methods to reduce proteome complexity.
    De A; Dutta TK; Ali MA; Behera P; Gali JM
    Anal Biochem; 2019 Nov; 584():113388. PubMed ID: 31404526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depleting high-abundant and enriching low-abundant proteins in human serum: An evaluation of sample preparation methods using magnetic nanoparticle, chemical depletion and immunoaffinity techniques.
    de Jesus JR; da Silva Fernandes R; de Souza Pessôa G; Raimundo IM; Arruda MAZ
    Talanta; 2017 Aug; 170():199-209. PubMed ID: 28501159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of depletion versus equalization for reducing high-abundance proteins in human serum.
    Fernández C; Santos HM; Ruíz-Romero C; Blanco FJ; Capelo-Martínez JL
    Electrophoresis; 2011 Nov; 32(21):2966-74. PubMed ID: 21997478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cost-effective method to get insight into the peritoneal dialysate effluent proteome.
    Araújo JE; Jorge S; Teixeira E Costa F; Ramos A; Lodeiro C; Santos HM; Capelo JL
    J Proteomics; 2016 Aug; 145():207-213. PubMed ID: 27216641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D DIGE analysis of serum after fractionation by ProteoMiner™ beads.
    Liang C; Tan GS; Chung MC
    Methods Mol Biol; 2012; 854():181-94. PubMed ID: 22311761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of affinity depletion of abundant proteins and reversed-phase fractionation in proteomic analysis of human plasma/serum.
    Zolotarjova N; Mrozinski P; Chen H; Martosella J
    J Chromatogr A; 2008 May; 1189(1-2):332-8. PubMed ID: 18154976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplifying the human serum proteome for discriminating patients with bipolar disorder of other psychiatry conditions.
    de Jesus JR; Galazzi RM; de Lima TB; Banzato CEM; de Almeida Lima E Silva LF; de Rosalmeida Dantas C; Gozzo FC; Arruda MAZ
    Clin Biochem; 2017 Dec; 50(18):1118-1125. PubMed ID: 28662995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Detection of Low-Abundance Human Plasma Proteins by Integrating Polyethylene Glycol Fractionation and Immunoaffinity Depletion.
    Liu Z; Fan S; Liu H; Yu J; Qiao R; Zhou M; Yang Y; Zhou J; Xie P
    PLoS One; 2016; 11(11):e0166306. PubMed ID: 27832179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modified protein precipitation procedure for efficient removal of albumin from serum.
    Chen YY; Lin SY; Yeh YY; Hsiao HH; Wu CY; Chen ST; Wang AH
    Electrophoresis; 2005 Jun; 26(11):2117-27. PubMed ID: 15880626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the efficacy of albumin removal procedures on porcine serum proteome profile.
    Grubbs JK; Tuggle CK; Dekkers JC; Boddicker NJ; Nguyen YT; Huff-Lonergan E; Nettleton D; Lonergan SM
    J Anim Sci; 2015 Apr; 93(4):1592-8. PubMed ID: 26020181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis.
    Kay R; Barton C; Ratcliffe L; Matharoo-Ball B; Brown P; Roberts J; Teale P; Creaser C
    Rapid Commun Mass Spectrom; 2008 Oct; 22(20):3255-60. PubMed ID: 18803344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of differential strategies to enhance detection of low-abundance proteins in the bovine serum proteome.
    Schalich KM; Herren AW; Selvaraj V
    Anim Sci J; 2020; 91(1):e13388. PubMed ID: 32578273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rat plasma proteomics: effects of abundant protein depletion on proteomic analysis.
    Linke T; Doraiswamy S; Harrison EH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):273-81. PubMed ID: 17188586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma prefractionation methods for proteomic analysis and perspectives in clinical applications.
    Chutipongtanate S; Chatchen S; Svasti J
    Proteomics Clin Appl; 2017 Jul; 11(7-8):. PubMed ID: 28195677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Analysis of Low Molecular Weight Serum Proteome Enrichment for Mass Spectrometric Studies.
    Das L; Murthy V; Varma AK
    ACS Omega; 2020 Nov; 5(44):28877-28888. PubMed ID: 33195941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing protein recovery yield from serum samples treated with beads technology.
    Bellei E; Monari E; Bergamini S; Ozben T; Tomasi A
    Electrophoresis; 2011 Jun; 32(12):1414-21. PubMed ID: 21563187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity.
    Millioni R; Tolin S; Puricelli L; Sbrignadello S; Fadini GP; Tessari P; Arrigoni G
    PLoS One; 2011 May; 6(5):e19603. PubMed ID: 21573190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New method for prefractionation of plasma for proteomic analysis.
    Fitzgerald A; Walsh BJ
    Electrophoresis; 2010 Oct; 31(21):3580-5. PubMed ID: 20931617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MS-Based Proteomic Analysis of Serum and Plasma: Problem of High Abundant Components and Lights and Shadows of Albumin Removal.
    Pietrowska M; Wlosowicz A; Gawin M; Widlak P
    Adv Exp Med Biol; 2019; 1073():57-76. PubMed ID: 31236839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ProteoMiner™ and SELDI-TOF-MS: a robust and highly reproducible combination for biomarker discovery from whole blood serum.
    Fröbel J; Hartwig S; Passlack W; Eckel J; Haas R; Czibere A; Lehr S
    Arch Physiol Biochem; 2010; 116(4-5):174-80. PubMed ID: 20662595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.