These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31404832)

  • 41. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries.
    Zhang L; Wan F; Wang X; Cao H; Dai X; Niu Z; Wang Y; Chen J
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5594-5602. PubMed ID: 29357218
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. All-cellulose gel electrolyte with black phosphorus based lithium ion conductors toward advanced lithium-sulfurized polyacrylonitrile batteries.
    Huang Y; Wang Y; Fu Y
    Carbohydr Polym; 2022 Nov; 296():119950. PubMed ID: 36087996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Rational Reconfiguration of Electrolyte for High-Energy and Long-Life Lithium-Chalcogen Batteries.
    Wang WP; Zhang J; Yin YX; Duan H; Chou J; Li SY; Yan M; Xin S; Guo YG
    Adv Mater; 2020 Jun; 32(23):e2000302. PubMed ID: 32363631
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and Electrochemical Performance of PEG-MnO₂-Sulfur Composites Cathode Materials for Lithium-Sulfur Batteries.
    Radhika G; Subadevi R; Krishnaveni K; Liu WR; Sivakumar M
    J Nanosci Nanotechnol; 2018 Jan; 18(1):127-131. PubMed ID: 29768824
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction.
    Guo J; Yang Z; Yu Y; Abruña HD; Archer LA
    J Am Chem Soc; 2013 Jan; 135(2):763-7. PubMed ID: 23234561
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Refining Interfaces between Electrolyte and Both Electrodes with Carbon Nanotube Paper for High-Loading Lithium-Sulfur Batteries.
    Peng Y; Wen Z; Liu C; Zeng J; Wang Y; Zhao J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6986-6994. PubMed ID: 30644725
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Li
    Jiang J; Fan Q; Chou S; Guo Z; Konstantinov K; Liu H; Wang J
    Small; 2021 Mar; 17(9):e1903934. PubMed ID: 31657137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.
    Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7783-9. PubMed ID: 26981849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering Bifunctional Host Materials of Sulfur and Lithium-Metal Based on Nitrogen-Enriched Polyacrylonitrile for Li-S Batteries.
    Dai Z; Wang M; Zhang Y; Wang B; Luo H; Zhang X; Wang Q; Zhang Y; Wu H
    Chemistry; 2020 Jul; 26(40):8784-8793. PubMed ID: 32583913
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Universal Strategy To Prepare Sulfur-Containing Polymer Composites with Desired Morphologies for Lithium-Sulfur Batteries.
    Zeng SZ; Zeng X; Tu W; Huang H; Yu L; Yao Y; Jin N; Zhang Q; Zou J
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22002-22012. PubMed ID: 29873477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic Effect of Salinized Quinone for Entrapment of Polysulfides for High-Performance Li-S Batteries.
    Qu G; Tan J; Wu H; Yu Z; Zhang S; Liu G; Zheng GW; Tian B; Su C
    ACS Appl Mater Interfaces; 2020 May; 12(21):23867-23873. PubMed ID: 32368905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Core-Shell-Structured Sulfur Cathode: Ultrathin δ-MnO
    Li Q; Ma Z; Li J; Liu Z; Fan L; Qin X; Shao G
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35049-35057. PubMed ID: 32667773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene Fluoride-Hexafluoropropylene) (PVDF-HFP) for Enhanced Solid-State Lithium-Sulfur Batteries.
    Xia Y; Wang X; Xia X; Xu R; Zhang S; Wu J; Liang Y; Gu C; Tu J
    Chemistry; 2017 Oct; 23(60):15203-15209. PubMed ID: 28875509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A 3D polyacrylonitrile nanofiber and flexible polydimethylsiloxane macromolecule combined all-solid-state composite electrolyte for efficient lithium metal batteries.
    Gao L; Li J; Sarmad B; Cheng B; Kang W; Deng N
    Nanoscale; 2020 Jul; 12(26):14279-14289. PubMed ID: 32609141
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Research Progress toward the Practical Applications of Lithium-Sulfur Batteries.
    Lochala J; Liu D; Wu B; Robinson C; Xiao J
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24407-24421. PubMed ID: 28617586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries.
    Li G; Huang Q; He X; Gao Y; Wang D; Kim SH; Wang D
    ACS Nano; 2018 Feb; 12(2):1500-1507. PubMed ID: 29376330
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Solvating Electrolytes for Lithium-Sulfur Batteries.
    Gupta A; Bhargav A; Manthiram A
    Adv Energy Mater; 2019 Feb; 9(6):. PubMed ID: 31807123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.