These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31404837)

  • 1. Highly stretchable superhydrophobic surface by silica nanoparticle embedded electrospun fibrous mat.
    Lee DE; Choi EY; Yang HJ; Murthy ASN; Singh T; Lim JM; Im J
    J Colloid Interface Sci; 2019 Nov; 555():532-540. PubMed ID: 31404837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly Stretchable and Robust Non-fluorinated Superhydrophobic Surface.
    Ju J; Yao X; Hou X; Liu Q; Zhang YS; Khademhosseini A
    J Mater Chem A Mater; 2017 Aug; 5(31):16273-16280. PubMed ID: 29062483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stretchable Superhydrophobic Composite Coating Based on Self-Adaptive Deformation of Hierarchical Structures.
    Hu X; Tang C; He Z; Shao H; Xu K; Mei J; Lau WM
    Small; 2017 May; 13(19):. PubMed ID: 28306203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.
    Lin J; Cai Y; Wang X; Ding B; Yu J; Wang M
    Nanoscale; 2011 Mar; 3(3):1258-62. PubMed ID: 21270991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Stretchable and Conductive Superhydrophobic Coating for Flexible Electronics.
    Su X; Li H; Lai X; Chen Z; Zeng X
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10587-10597. PubMed ID: 29508997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-cleaning superhydrophobic epoxy coating based on fibrous silica-coated iron oxide magnetic nanoparticles.
    Alamri H; Al-Shahrani A; Bovero E; Khaldi T; Alabedi G; Obaid W; Al-Taie I; Fihri A
    J Colloid Interface Sci; 2018 Mar; 513():349-356. PubMed ID: 29169024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles.
    Lee WK; Jung WB; Nagel SR; Odom TW
    Nano Lett; 2016 Jun; 16(6):3774-9. PubMed ID: 27144774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy-siloxane modified SiO2 nanoparticles: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle.
    Wang S; Li Y; Fei X; Sun M; Zhang C; Li Y; Yang Q; Hong X
    J Colloid Interface Sci; 2011 Jul; 359(2):380-8. PubMed ID: 21536296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Packing the silica colloidal crystal beads: a facile route to superhydrophobic surfaces.
    Sun C; Gu ZZ; Xu H
    Langmuir; 2009 Nov; 25(21):12439-43. PubMed ID: 19785469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity.
    Ma M; Hill RM; Lowery JL; Fridrikh SV; Rutledge GC
    Langmuir; 2005 Jun; 21(12):5549-54. PubMed ID: 15924488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fabrication of mechanically durable and stretchable superhydrophobic PDMS/SiO
    Xue CH; Tian QQ; Jia ST; Zhao LL; Ding YR; Li HG; An QF
    RSC Adv; 2020 May; 10(33):19466-19473. PubMed ID: 35515442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a superhydrophobic surface using woven structures.
    Michielsen S; Lee HJ
    Langmuir; 2007 May; 23(11):6004-10. PubMed ID: 17465576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity.
    Wang H; Fang J; Cheng T; Ding J; Qu L; Dai L; Wang X; Lin T
    Chem Commun (Camb); 2008 Feb; (7):877-9. PubMed ID: 18253534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective quantification of surface roughness parameters affecting superhydrophobicity.
    Cho Y; Park CH
    RSC Adv; 2020 Aug; 10(52):31251-31260. PubMed ID: 35520686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers.
    Singh A; Steely L; Allcock HR
    Langmuir; 2005 Dec; 21(25):11604-7. PubMed ID: 16316089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design parameters for a robust superhydrophobic electrospun nonwoven mat.
    Rawal A
    Langmuir; 2012 Feb; 28(6):3285-9. PubMed ID: 22251513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun Fibrous Mat with pH-Switchable Superwettability That Can Separate Layered Oil/Water Mixtures.
    Li JJ; Zhou YN; Jiang ZD; Luo ZH
    Langmuir; 2016 Dec; 32(50):13358-13366. PubMed ID: 27993022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.