These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31405013)

  • 1. Network as a Biomarker: A Novel Network-Based Sparse Bayesian Machine for Pathway-Driven Drug Response Prediction.
    Liu Q; Muglia LJ; Huang LF
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31405013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driver network as a biomarker: systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction.
    Huang L; Brunell D; Stephan C; Mancuso J; Yu X; He B; Thompson TC; Zinner R; Kim J; Davies P; Wong STC
    Bioinformatics; 2019 Oct; 35(19):3709-3717. PubMed ID: 30768150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Machine Learning Enables Identification of Transcriptional Network Disruptions Associated with Drug-Resistant Prostate Cancer.
    Blatti C; de la Fuente J; Gao H; Marín-Goñi I; Chen Z; Zhao SD; Tan W; Weinshilboum R; Kalari KR; Wang L; Hernaez M
    Cancer Res; 2023 Apr; 83(8):1361-1380. PubMed ID: 36779846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse overlapping group lasso for integrative multi-omics analysis.
    Park H; Niida A; Miyano S; Imoto S
    J Comput Biol; 2015 Feb; 22(2):73-84. PubMed ID: 25629319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust edge-based biomarker discovery improves prediction of breast cancer metastasis.
    Adnan N; Lei C; Ruan J
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):359. PubMed ID: 32998692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks.
    Park H; Yamaguchi R; Imoto S; Miyano S
    PLoS One; 2022; 17(5):e0261630. PubMed ID: 35584089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smooth Bayesian network model for the prediction of future high-cost patients with COPD.
    Lin S; Zhang Q; Chen F; Luo L; Chen L; Zhang W
    Int J Med Inform; 2019 Jun; 126():147-155. PubMed ID: 31029256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetMIM: network-based multi-omics integration with block missingness for biomarker selection and disease outcome prediction.
    Zhu B; Zhang Z; Leung SY; Fan X
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39288230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MD-Miner: a network-based approach for personalized drug repositioning.
    Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tree-like Bayesian structure learning algorithm for small-sample datasets from complex biological model systems.
    Yin W; Garimalla S; Moreno A; Galinski MR; Styczynski MP
    BMC Syst Biol; 2015 Aug; 9():49. PubMed ID: 26310492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks.
    Park H; Shimamura T; Imoto S; Miyano S
    J Comput Biol; 2018 Feb; 25(2):130-145. PubMed ID: 29053381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting chemosensitivity using drug perturbed gene dynamics.
    Mannheimer JD; Prasad A; Gustafson DL
    BMC Bioinformatics; 2021 Jan; 22(1):15. PubMed ID: 33413081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods.
    Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building patient-specific models for receptor tyrosine kinase signaling networks.
    Ebata K; Yamashiro S; Iida K; Okada M
    FEBS J; 2022 Jan; 289(1):90-101. PubMed ID: 33755310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miRNA-target gene regulatory networks: A Bayesian integrative approach to biomarker selection with application to kidney cancer.
    Chekouo T; Stingo FC; Doecke JD; Do KA
    Biometrics; 2015 Jun; 71(2):428-38. PubMed ID: 25639276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.