BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31405076)

  • 1. Integrative Analysis of Cancer Omics Data for Prognosis Modeling.
    Wang S; Wu M; Ma S
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31405076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated analysis of multidimensional omics data on cutaneous melanoma prognosis.
    Jiang Y; Shi X; Zhao Q; Krauthammer M; Rothberg BE; Ma S
    Genomics; 2016 Jun; 107(6):223-30. PubMed ID: 27141884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAS-viewer: web-based tool for splicing-guided integrative analysis of multi-omics cancer data.
    Han S; Kim D; Kim Y; Choi K; Miller JE; Kim D; Lee Y
    BMC Med Genomics; 2018 Apr; 11(Suppl 2):25. PubMed ID: 29697367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data.
    Tong D; Tian Y; Zhou T; Ye Q; Li J; Ding K; Li J
    BMC Med Inform Decis Mak; 2020 Feb; 20(1):22. PubMed ID: 32033604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Method to Identify Potential Prognostic Markers Across Distinct Tumor Types.
    Zhang B; Kochetkova E; Norberg E
    Methods Mol Biol; 2022; 2445():275-288. PubMed ID: 34972998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMT network-based feature selection improves prognosis prediction in lung adenocarcinoma.
    Shao B; Bjaanæs MM; Helland Å; Schütte C; Conrad T
    PLoS One; 2019; 14(1):e0204186. PubMed ID: 30703089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Application of Bayesian Methods in Cancer Prognosis and Prediction.
    Chu J; Sun NA; Hu W; Chen X; Yi N; Shen Y
    Cancer Genomics Proteomics; 2022; 19(1):1-11. PubMed ID: 34949654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histopathological imaging features- versus molecular measurements-based cancer prognosis modeling.
    Zhang S; Fan Y; Zhong T; Ma S
    Sci Rep; 2020 Sep; 10(1):15030. PubMed ID: 32929170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Cancer Omics Atlas: an integrative resource for cancer omics annotations.
    Sun Q; Li M; Wang X
    BMC Med Genomics; 2018 Aug; 11(1):63. PubMed ID: 30089500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data.
    Mo Q; Shen R; Guo C; Vannucci M; Chan KS; Hilsenbeck SG
    Biostatistics; 2018 Jan; 19(1):71-86. PubMed ID: 28541380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative analysis of multiple cancer genomic datasets under the heterogeneity model.
    Liu J; Huang J; Ma S
    Stat Med; 2013 Sep; 32(20):3509-21. PubMed ID: 23519988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. I-Boost: an integrative boosting approach for predicting survival time with multiple genomics platforms.
    Wong KY; Fan C; Tanioka M; Parker JS; Nobel AB; Zeng D; Lin DY; Perou CM
    Genome Biol; 2019 Mar; 20(1):52. PubMed ID: 30845957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-analysis of Cancer Gene Profiling Data.
    Roy J; Winter C; Schroeder M
    Methods Mol Biol; 2016; 1381():211-22. PubMed ID: 26667463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Omics Data Analysis Identifies Prognostic Biomarkers across Cancers.
    Demir Karaman E; Işık Z
    Med Sci (Basel); 2023 Jun; 11(3):. PubMed ID: 37489460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating gene co-expression network in identification of cancer prognosis markers.
    Ma S; Shi M; Li Y; Yi D; Shia BC
    BMC Bioinformatics; 2010 May; 11():271. PubMed ID: 20487548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative Analysis of Pathological Images and Multi-Dimensional Genomic Data for Early-Stage Cancer Prognosis.
    Shao W; Han Z; Cheng J; Cheng L; Wang T; Sun L; Lu Z; Zhang J; Zhang D; Huang K
    IEEE Trans Med Imaging; 2020 Jan; 39(1):99-110. PubMed ID: 31170067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.