These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31405076)

  • 41. Integrating multiple omics data for the discovery of potential Beclin-1 interactions in breast cancer.
    Chen Y; Wang X; Wang G; Li Z; Wang J; Huang L; Qin Z; Yuan X; Cheng Z; Zhang S; Yin Y; He J
    Mol Biosyst; 2017 May; 13(5):991-999. PubMed ID: 28401970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cancer Subtype Discovery Based on Integrative Model of Multigenomic Data.
    Ge SG; Xia J; Sha W; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1115-1121. PubMed ID: 28113782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing the clinical utility of genomic expression data across human cancers.
    Xu X; Huang L; Chan CH; Yu T; Miao R; Liu C
    Oncotarget; 2016 Jul; 7(29):45926-45936. PubMed ID: 27322207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrative genomic data mining for discovery of potential blood-borne biomarkers for early diagnosis of cancer.
    Yang Y; Pospisil P; Iyer LK; Adelstein SJ; Kassis AI
    PLoS One; 2008; 3(11):e3661. PubMed ID: 18987750
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of cancer omics commonality and difference via community fusion.
    Sun Y; Jiang Y; Li Y; Ma S
    Stat Med; 2019 Mar; 38(7):1200-1212. PubMed ID: 30421444
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Challenges in the Integration of Omics and Non-Omics Data.
    López de Maturana E; Alonso L; Alarcón P; Martín-Antoniano IA; Pineda S; Piorno L; Calle ML; Malats N
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30897838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. iGPSe: a visual analytic system for integrative genomic based cancer patient stratification.
    Ding H; Wang C; Huang K; Machiraju R
    BMC Bioinformatics; 2014 Jul; 15():203. PubMed ID: 25000928
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Horizontal and vertical integrative analysis methods for mental disorders omics data.
    Wang S; Shi X; Wu M; Ma S
    Sci Rep; 2019 Sep; 9(1):13430. PubMed ID: 31530853
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Micromarkers 2.0: an update on the role of microRNAs in cancer diagnosis and prognosis.
    Ferracin M; Negrini M
    Expert Rev Mol Diagn; 2015; 15(10):1369-81. PubMed ID: 26338209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LinkedOmics: analyzing multi-omics data within and across 32 cancer types.
    Vasaikar SV; Straub P; Wang J; Zhang B
    Nucleic Acids Res; 2018 Jan; 46(D1):D956-D963. PubMed ID: 29136207
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrative prescreening in analysis of multiple cancer genomic studies.
    Song R; Huang J; Ma S
    BMC Bioinformatics; 2012 Jul; 13():168. PubMed ID: 22799431
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Examination of Independent Prognostic Power of Gene Expressions and Histopathological Imaging Features in Cancer.
    Zhong T; Wu M; Ma S
    Cancers (Basel); 2019 Mar; 11(3):. PubMed ID: 30871256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation on the diagnostic and prognostic values of long non-coding RNA BLACAT1 in common types of human cancer.
    Chen X; Dai M; Zhu H; Li J; Huang Z; Liu X; Huang Y; Chen J; Dai S
    Mol Cancer; 2017 Oct; 16(1):160. PubMed ID: 29037201
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrative data mining and meta-analysis to investigate the prognostic role of microRNA-200 family in various human malignant neoplasms: A consideration on heterogeneity.
    Yuan L; Bing Z; Yan P; Li R; Wang C; Sun X; Yang J; Shi X; Zhang Y; Yang K
    Gene; 2019 Oct; 716():144025. PubMed ID: 31394177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detecting common gene expression patterns in multiple cancer outcome entities.
    Yang X; Bentink S; Spang R
    Biomed Microdevices; 2005 Sep; 7(3):247-51. PubMed ID: 16133813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-throughput «Omics» technologies: New tools for the study of triple-negative breast cancer.
    Judes G; Rifaï K; Daures M; Dubois L; Bignon YJ; Penault-Llorca F; Bernard-Gallon D
    Cancer Lett; 2016 Nov; 382(1):77-85. PubMed ID: 26965997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Promoting similarity of model sparsity structures in integrative analysis of cancer genetic data.
    Huang Y; Liu J; Yi H; Shia BC; Ma S
    Stat Med; 2017 Feb; 36(3):509-559. PubMed ID: 27667129
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MODMatcher: multi-omics data matcher for integrative genomic analysis.
    Yoo S; Huang T; Campbell JD; Lee E; Tu Z; Geraci MW; Powell CA; Schadt EE; Spira A; Zhu J
    PLoS Comput Biol; 2014 Aug; 10(8):e1003790. PubMed ID: 25122495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.