These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31405097)

  • 1. Influence of Zn and Sn on the Precipitation Behavior of New Al-Mg-Si Alloys.
    Glöckel F; Uggowitzer PJ; Felfer P; Pogatscher S; Höppel HW
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31405097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the Mg/Si Ratio on Microstructure, Mechanical Properties, and Precipitation Behavior of Al⁻Mg⁻Si⁻1.0 wt %-Zn Alloys.
    Li Y; Gao G; Wang Z; Di H; Li J; Xu G
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Thermal Treatments on Sn-Alloyed Al-Mg-Si Alloys.
    Schmid F; Uggowitzer PJ; Schäublin R; Werinos M; Ebner T; Pogatscher S
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31163606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the Quenching Rate on the Microstructure, Mechanical Properties and Paint Bake-Hardening Response of Al-Mg-Si Automotive Sheets.
    Gao G; Li Y; Wang Z; Di H; Li J; Xu G
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hardness data related to pre-ageing, natural secondary ageing, and paint bake hardening in Al-Mg-Si alloys.
    Yang Z; Liang Z; Leyvraz D; Banhart J
    Data Brief; 2019 Dec; 27():104494. PubMed ID: 31673573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Property Criteria for Automotive Al-Mg-Si Sheet Alloys.
    Prillhofer R; Rank G; Berneder J; Antrekowitsch H; Uggowitzer PJ; Pogatscher S
    Materials (Basel); 2014 Jul; 7(7):5047-5068. PubMed ID: 28788119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a Trace Addition of Sn on the Aging Behavior of Al-Mg-Si Alloy with a Different Mg/Si Ratio.
    Ma L; Tang J; Tu W; Ye L; Jiang H; Zhan X; Zhao J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32092875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced age-hardening response and creep resistance of an Al-0.5Mn-0.3Si (at.%) alloy by Sn inoculation.
    Farkoosh AR; Dunand DC; Seidman DN
    Acta Mater; 2022 Nov; 240():. PubMed ID: 36246780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Cu Content on Performance of Sn-Zn-Cu Lead-Free Solder Alloys Designed by Cluster-Plus-Glue-Atom Model.
    Qiu J; Peng Y; Gao P; Li C
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasicrystal-reinforced Mg alloys.
    Kyun Kim Y; Tae Kim W; Hyang Kim D
    Sci Technol Adv Mater; 2014 Apr; 15(2):024801. PubMed ID: 27877660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Minor Zn Addition on Precipitation Behavior and Intergranular Corrosion Properties of Al-Mg-Si Alloy.
    Chi S; Deng Y; Xu X; Guo X
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32024129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data analysis and other considerations concerning the study of precipitation in Al-Mg-Si alloys by Atom Probe Tomography.
    Zandbergen MW; Xu Q; Cerezo A; Smith GD
    Data Brief; 2015 Dec; 5():626-41. PubMed ID: 26958619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous increase in strength and ductility by decreasing interface energy between Zn and Al phases in cast Al-Zn-Cu alloy.
    Han SZ; Choi EA; Park HW; Lim SH; Lee J; Ahn JH; Hwang NM; Kim K
    Sci Rep; 2017 Sep; 7(1):12195. PubMed ID: 28939835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the Composition and Vacancy Concentration on Cluster Decomposition Behavior in Al-Si-Mg Alloy: A Kinetic Monte Carlo Study.
    Lee S; Kang H; Jeon J; Bae D
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precipitation Hardening at Elevated Temperatures above 400 °C and Subsequent Natural Age Hardening of Commercial Al-Si-Cu Alloy.
    Li R; Takata N; Suzuki A; Kobashi M; Okada Y; Furukawa Y
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic-assisted soldering of fine-grained 7034 aluminum alloy using Sn-Zn solders below 300°C.
    Guo W; Luan T; He J; Yan J
    Ultrason Sonochem; 2018 Jan; 40(Pt A):815-821. PubMed ID: 28946490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at% Mg-0.38at% Si alloy.
    Chang CS; Wieler I; Wanderka N; Banhart J
    Ultramicroscopy; 2009 Apr; 109(5):585-92. PubMed ID: 19162402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achievement of High Strength and Ductility in Al-Si-Cu-Mg Alloys by Intermediate Phase Optimization in As-Cast and Heat Treatment Conditions.
    Zhang B; Zhang L; Wang Z; Gao A
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32024095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure, Precipitates Behavior, and Mechanical Properties of Age-Hardened Al-Mg-Si Alloy Sheet Fabricated by Twin-Roll Casting.
    Gao G; Li X; Xiong B; Li Z; Zhang Y; Li Y; Yan L
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Cu Addition on the Precipitation Hardening and Mechanical Properties of Al-Mg Based Cast Alloys.
    Wahid SA; Ha SH; Kim BH; Yoon YO; Lim HK; Kim SK
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1943-1947. PubMed ID: 33404473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.