BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 31405199)

  • 21. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control.
    Adeyinka OS; Riaz S; Toufiq N; Yousaf I; Bhatti MU; Batcho A; Olajide AA; Nasir IA; Tabassum B
    Mol Biol Rep; 2020 Aug; 47(8):6309-6319. PubMed ID: 32696345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA interference-based gene silencing in mice: the development of a novel therapeutical strategy.
    Spänkuch B; Strebhardt K
    Curr Pharm Des; 2005; 11(26):3405-19. PubMed ID: 16250844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissecting protein domain variability in the core RNA interference machinery of five insect orders.
    Arraes FBM; Martins-de-Sa D; Noriega Vasquez DD; Melo BP; Faheem M; de Macedo LLP; Morgante CV; Barbosa JARG; Togawa RC; Moreira VJV; Danchin EGJ; Grossi-de-Sa MF
    RNA Biol; 2021 Nov; 18(11):1653-1681. PubMed ID: 33302789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Study of Cell-Penetrating Peptides to Deliver dsRNA and siRNA by Feeding in the Desert Locust,
    Vogel E; Santos D; Huygens C; Peeters P; Van den Brande S; Wynant N; Vanden Broeck J
    Insects; 2023 Jul; 14(7):. PubMed ID: 37504603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resistance to RNA interference by plant-derived double-stranded RNAs but not plant-derived short interfering RNAs in Helicoverpa armigera.
    Fu J; Xu S; Lu H; Li F; Li S; Chang L; Heckel DG; Bock R; Zhang J
    Plant Cell Environ; 2022 Jun; 45(6):1930-1941. PubMed ID: 35312082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental RNAi in herbivorous insects.
    Ivashuta S; Zhang Y; Wiggins BE; Ramaseshadri P; Segers GC; Johnson S; Meyer SE; Kerstetter RA; McNulty BC; Bolognesi R; Heck GR
    RNA; 2015 May; 21(5):840-50. PubMed ID: 25802407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo.
    Wang K; Peng Y; Pu J; Fu W; Wang J; Han Z
    Insect Biochem Mol Biol; 2016 Oct; 77():1-9. PubMed ID: 27449967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review.
    Huvenne H; Smagghe G
    J Insect Physiol; 2010 Mar; 56(3):227-35. PubMed ID: 19837076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering host-derived resistance against plant parasites through RNA interference: challenges and opportunities.
    Runo S
    Bioeng Bugs; 2011; 2(4):208-13. PubMed ID: 21829096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inefficient uptake of small interfering RNAs is responsible for their inability to trigger RNA interference in Colorado potato beetle cells.
    Koo J; Gurusamy D; Palli SR
    Arch Insect Biochem Physiol; 2023 Oct; 114(2):1-12. PubMed ID: 37452750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests.
    Garbatti Factor B; de Moura Manoel Bento F; Figueira A
    Methods Mol Biol; 2022; 2360():317-345. PubMed ID: 34495524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects.
    Mongelli V; Saleh MC
    Annu Rev Virol; 2016 Sep; 3(1):573-589. PubMed ID: 27741406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transgene-Assisted Genetic Screen Identifies
    Long T; Meng F; Lu R
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells.
    Kawasaki H; Taira K
    Nucleic Acids Res; 2003 Jan; 31(2):700-7. PubMed ID: 12527779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topical Application of Double-Stranded RNA Targeting 2b and CP Genes of
    Holeva MC; Sklavounos A; Rajeswaran R; Pooggin MM; Voloudakis AE
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34066062
    [No Abstract]   [Full Text] [Related]  

  • 36. Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi.
    van Cleef KW; van Mierlo JT; Miesen P; Overheul GJ; Fros JJ; Schuster S; Marklewitz M; Pijlman GP; Junglen S; van Rij RP
    Nucleic Acids Res; 2014 Jul; 42(13):8732-44. PubMed ID: 24939903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Strategies for exogenous RNA delivery in RNAi-mediated pest management].
    Gong L; Ying S; Zhang Y; Wang J; Sun G
    Sheng Wu Gong Cheng Xue Bao; 2023 Feb; 39(2):459-471. PubMed ID: 36847083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antiviral innate immune response of RNA interference.
    Sidahmed A; Abdalla S; Mahmud S; Wilkie B
    J Infect Dev Ctries; 2014 Jul; 8(7):804-10. PubMed ID: 25022288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Symbiont-Mediated RNA Interference (SMR): Using Symbiotic Bacteria as Vectors for Delivering RNAi to Insects.
    Dyson P; Figueiredo M; Andongma AA; Whitten MMA
    Methods Mol Biol; 2022; 2360():295-306. PubMed ID: 34495522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transplastomic Tomato Plants Expressing Insect-Specific Double-Stranded RNAs: A Protocol Based on Biolistic Transformation.
    Kaplanoglu E; Kolotilin I; Menassa R; Donly C
    Methods Mol Biol; 2022; 2360():235-252. PubMed ID: 34495519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.