These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Structural basis for the hijacking of endosomal sorting nexin proteins by Paul B; Kim HS; Kerr MC; Huston WM; Teasdale RD; Collins BM Elife; 2017 Feb; 6():. PubMed ID: 28226239 [TBL] [Abstract][Full Text] [Related]
43. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. van Ooij C; Apodaca G; Engel J Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339 [TBL] [Abstract][Full Text] [Related]
44. Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis. Mital J; Miller NJ; Dorward DW; Dooley CA; Hackstadt T PLoS One; 2013; 8(5):e63426. PubMed ID: 23696825 [TBL] [Abstract][Full Text] [Related]
45. Chlamydia trachomatis Subverts Alpha-Actinins To Stabilize Its Inclusion. Haines A; Wesolowski J; Paumet F Microbiol Spectr; 2023 Feb; 11(1):e0261422. PubMed ID: 36651786 [TBL] [Abstract][Full Text] [Related]
46. Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion. Volceanov L; Herbst K; Biniossek M; Schilling O; Haller D; Nölke T; Subbarayal P; Rudel T; Zieger B; Häcker G mBio; 2014 Oct; 5(5):e01802-14. PubMed ID: 25293760 [TBL] [Abstract][Full Text] [Related]
47. Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Li Z; Chen C; Chen D; Wu Y; Zhong Y; Zhong G Infect Immun; 2008 Jun; 76(6):2746-57. PubMed ID: 18391011 [TBL] [Abstract][Full Text] [Related]
48. The Herrera CM; McMahon E; Swaney DL; Sherry J; Pha K; Adams-Boone K; Johnson JR; Krogan NJ; Stevers M; Solomon D; Elwell C; Engel J bioRxiv; 2024 Feb; ():. PubMed ID: 38464023 [No Abstract] [Full Text] [Related]
49. [Localization of the hypothetical protein CT249 in the Chlamydia trachomatis inclusion membrane]. Jia TJ; Liu DW; Luo JH; Zhong GM Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):645-8. PubMed ID: 17944365 [TBL] [Abstract][Full Text] [Related]
50. Chlamydial Lytic Exit from Host Cells Is Plasmid Regulated. Yang C; Starr T; Song L; Carlson JH; Sturdevant GL; Beare PA; Whitmire WM; Caldwell HD mBio; 2015 Nov; 6(6):e01648-15. PubMed ID: 26556273 [TBL] [Abstract][Full Text] [Related]
52. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. Subbarayal P; Karunakaran K; Winkler AC; Rother M; Gonzalez E; Meyer TF; Rudel T PLoS Pathog; 2015 Apr; 11(4):e1004846. PubMed ID: 25906164 [TBL] [Abstract][Full Text] [Related]
53. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Cocchiaro JL; Kumar Y; Fischer ER; Hackstadt T; Valdivia RH Proc Natl Acad Sci U S A; 2008 Jul; 105(27):9379-84. PubMed ID: 18591669 [TBL] [Abstract][Full Text] [Related]
54. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Hower S; Wolf K; Fields KA Mol Microbiol; 2009 Jun; 72(6):1423-37. PubMed ID: 19460098 [TBL] [Abstract][Full Text] [Related]
55. Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection. Haines A; Wesolowski J; Ryan NM; Monteiro-Brás T; Paumet F mBio; 2021 Dec; 12(6):e0239721. PubMed ID: 34903051 [TBL] [Abstract][Full Text] [Related]
56. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. Moore ER; Mead DJ; Dooley CA; Sager J; Hackstadt T Microbiology (Reading); 2011 Mar; 157(Pt 3):830-838. PubMed ID: 21109560 [TBL] [Abstract][Full Text] [Related]
57. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479 [TBL] [Abstract][Full Text] [Related]
58. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis. Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221 [TBL] [Abstract][Full Text] [Related]
59. The molecular biology and diagnostics of Chlamydia trachomatis. Birkelund S Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183 [TBL] [Abstract][Full Text] [Related]
60. Analysis of pmpD expression and PmpD post-translational processing during the life cycle of Chlamydia trachomatis serovars A, D, and L2. Kiselev AO; Skinner MC; Lampe MF PLoS One; 2009; 4(4):e5191. PubMed ID: 19367336 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]