These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31405984)

  • 1. Energy metabolism controls phenotypes by protein efficiency and allocation.
    Chen Y; Nielsen J
    Proc Natl Acad Sci U S A; 2019 Aug; 116(35):17592-17597. PubMed ID: 31405984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential proteomic efficiencies of energy pathways.
    Zeng H; Yang A
    BMC Syst Biol; 2019 Jan; 13(1):3. PubMed ID: 30630470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.
    Zakhartsev M; Yang X; Reuss M; Pörtner HO
    J Therm Biol; 2015 Aug; 52():117-29. PubMed ID: 26267506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox balance is key to explaining full vs. partial switching to low-yield metabolism.
    van Hoek MJ; Merks RM
    BMC Syst Biol; 2012 Mar; 6():22. PubMed ID: 22443685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling.
    Armingol E; Tobar E; Cabrera R
    PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering.
    de Kok S; Kozak BU; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2012 Jun; 12(4):387-97. PubMed ID: 22404754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of the ATP pool as a tool for metabolic engineering.
    Hädicke O; Klamt S
    Biochem Soc Trans; 2015 Dec; 43(6):1140-5. PubMed ID: 26614651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The common message of constraint-based optimization approaches: overflow metabolism is caused by two growth-limiting constraints.
    de Groot DH; Lischke J; Muolo R; Planqué R; Bruggeman FJ; Teusink B
    Cell Mol Life Sci; 2020 Feb; 77(3):441-453. PubMed ID: 31758233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing.
    Jobé AM; Herwig C; Surzyn M; Walker B; Marison I; von Stockar U
    Biotechnol Bioeng; 2003 Jun; 82(6):627-39. PubMed ID: 12673762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae.
    Pronk JT; Wenzel TJ; Luttik MA; Klaassen CC; Scheffers WA; Steensma HY; van Dijken JP
    Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():601-10. PubMed ID: 8012582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories.
    Gruchattka E; Hädicke O; Klamt S; Schütz V; Kayser O
    Microb Cell Fact; 2013 Sep; 12():84. PubMed ID: 24059635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.
    Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECMpy, a Simplified Workflow for Constructing Enzymatic Constrained Metabolic Network Model.
    Mao Z; Zhao X; Yang X; Zhang P; Du J; Yuan Q; Ma H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae.
    Liao X; Deng T; Zhu Y; Du G; Chen J
    J Appl Microbiol; 2008 Feb; 104(2):345-52. PubMed ID: 18194260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: a continuous culture study.
    Weusthuis RA; Adams H; Scheffers WA; van Dijken JP
    Appl Environ Microbiol; 1993 Sep; 59(9):3102-9. PubMed ID: 8215379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative energetics of glucose and xylose metabolism in ethanologenic recombinant Escherichia coli B.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1995; 51-52():179-95. PubMed ID: 7668846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An upper limit on Gibbs energy dissipation governs cellular metabolism.
    Niebel B; Leupold S; Heinemann M
    Nat Metab; 2019 Jan; 1(1):125-132. PubMed ID: 32694810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae.
    Lee SB; Tremaine M; Place M; Liu L; Pier A; Krause DJ; Xie D; Zhang Y; Landick R; Gasch AP; Hittinger CT; Sato TK
    Metab Eng; 2021 Nov; 68():119-130. PubMed ID: 34592433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network.
    Famili I; Forster J; Nielsen J; Palsson BO
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13134-9. PubMed ID: 14578455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.