These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31406238)

  • 21. Isolation and diversity of planctomycetes from the sponge Niphates sp., seawater, and sediment of Moreton Bay, Australia.
    Izumi H; Sagulenko E; Webb RI; Fuerst JA
    Antonie Van Leeuwenhoek; 2013 Oct; 104(4):533-46. PubMed ID: 23959164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing the Richness of Culturable Arsenic-Tolerant Bacteria from Theonella swinhoei by Addition of Sponge Skeleton to the Growth Medium.
    Keren R; Lavy A; Ilan M
    Microb Ecol; 2016 May; 71(4):873-86. PubMed ID: 26809776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron tomography of the nucleoid of Gemmata obscuriglobus reveals complex liquid crystalline cholesteric structure.
    Yee B; Sagulenko E; Morgan GP; Webb RI; Fuerst JA
    Front Microbiol; 2012; 3():326. PubMed ID: 22993511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards understanding the molecular mechanism of the endocytosis-like process in the bacterium Gemmata obscuriglobus.
    Fuerst JA; Sagulenko E
    Biochim Biophys Acta; 2014 Aug; 1843(8):1732-8. PubMed ID: 24144586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative assessment of marine sponge cells in vitro: development of improved growth medium.
    Willoughby R; Pomponi SA
    In Vitro Cell Dev Biol Anim; 2000 Mar; 36(3):194-200. PubMed ID: 10777060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories.
    Kaboré OD; Godreuil S; Drancourt M
    Front Cell Infect Microbiol; 2020; 10():519301. PubMed ID: 33330115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional reconstruction of bacteria with a complex endomembrane system.
    Santarella-Mellwig R; Pruggnaller S; Roos N; Mattaj IW; Devos DP
    PLoS Biol; 2013; 11(5):e1001565. PubMed ID: 23700385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobus.
    Yee B; Sagulenko E; Fuerst JA
    Microbiology (Reading); 2011 Jul; 157(Pt 7):2012-2021. PubMed ID: 21511768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile.
    Webster NS; Wilson KJ; Blackall LL; Hill RT
    Appl Environ Microbiol; 2001 Jan; 67(1):434-44. PubMed ID: 11133476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria.
    Davis KE; Joseph SJ; Janssen PH
    Appl Environ Microbiol; 2005 Feb; 71(2):826-34. PubMed ID: 15691937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gemmata obscuriglobus, a new genus and species of the budding bacteria.
    Franzmann PD; Skerman VB
    Antonie Van Leeuwenhoek; 1984; 50(3):261-8. PubMed ID: 6486770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts.
    Augustin JC; Carlier V
    Food Microbiol; 2006 Feb; 23(1):1-38. PubMed ID: 16942983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatially segregated transcription and translation in cells of the endomembrane-containing bacterium Gemmata obscuriglobus.
    Gottshall EY; Seebart C; Gatlin JC; Ward NL
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):11067-72. PubMed ID: 25024214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors.
    Schröder HC; Brümmer F; Fattorusso E; Aiello A; Menna M; de Rosa S; Batel R; Müller WE
    Prog Mol Subcell Biol; 2003; 37():163-97. PubMed ID: 15825644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of environmental organisms: the Planctomycetes paradigm.
    Cayrou C; Raoult D; Drancourt M
    Environ Microbiol Rep; 2010 Dec; 2(6):752-60. PubMed ID: 23766281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis.
    Li Z; He L; Miao X
    Curr Microbiol; 2007 Dec; 55(6):465-72. PubMed ID: 17896134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges.
    Mohamed NM; Saito K; Tal Y; Hill RT
    ISME J; 2010 Jan; 4(1):38-48. PubMed ID: 19617876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustained growth of explants from Mediterranean sponge Crambe crambe cultured in vitro with enriched RPMI 1640.
    Garcia Camacho F; Chileh T; Cerón García MC; Sanchez Mirón A; Belarbi EH; Contreras Gómez A; Molina Grima E
    Biotechnol Prog; 2006; 22(3):781-90. PubMed ID: 16739962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implementing sponge physiological and genomic information to enhance the diversity of its culturable associated bacteria.
    Lavy A; Keren R; Haber M; Schwartz I; Ilan M
    FEMS Microbiol Ecol; 2014 Feb; 87(2):486-502. PubMed ID: 24164535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustainable use of marine resources: cultivation of sponges.
    Brümmer F; Nickel M
    Prog Mol Subcell Biol; 2003; 37():143-62. PubMed ID: 15825643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.